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Bridge types
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Common bridge types

Horizontal slabs or girders supported by abutments and 
piers.

Common types:

● Slab type 

● I-beam type

● Box girder
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Common bridge types

Slab type 

● The width B is comparable to the span length L

● Applied in case of small spans

● The deck is usually made with voids

B
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Common bridge types

I- beam type

● Precast (usually) or cast-in-situ beams (rarely)

● Beams are usually prestressed

● Various methods for placing the precast beams at their 
position (crane, “caro ponte”)

● Can be used in difficult site conditions

B

H
Precast plate 
(“Pre-plate”)

Cast in-situ plate

Precast 
beam
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Common bridge types

Box girder bridges

● Deck comprises of hollow box of single or multiple cells

● Applied in case of long spans

● The height H might vary along span

B

H
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Box girder bridge
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Balanced cantilever bridges

● Built by segmental increment of the two cantilever arms 
extending from opposite sides of the pier, meeting at the 
center.

● Usually of box-type with varying height.
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Arch bridges

● Used in cases of long spans

● Difficult construction (usually)

● Several types

● Typical in older times

1900 1920
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Suspension bridges

● The deck is suspended from cables

● The suspension cables hang from towers and are anchored at each 
end of the bridge

Cable 
anchorage
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Cable-stayed bridges

● Consists of one or more columns (towers or pylons), with cables 
supporting the bridge deck.

● A type of balanced cantilever bridge. Each part carries its own 
weight.
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Geometric classification

Normal or skew 

● Normal: The axis of each pier is normal to the axis of the 
bridge.

● Otherwise it is skew

Example of a skew 
bridge
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Geometric classification

Straight or curved

A bridge can be curved and normal
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Structural considerations
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Structural systems

Simply supported spans

Advantages

● Can take differential settlements 
and tectonic displacements

● Allow prefabrication (precast 
beams)

Disadvantages

● Large moments at the middle of the spans

● Danger of deck fall during earthquakes (require wide sitting areas)

● Not clear seismic response:

♦ Asynchronous movement of decks

♦ Danger of impact between adjacent decks
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Structural systems

Continuous deck

Advantages

● Good distribution of moments 
between supports and spans → small 
deck thickness

● Good seismic behavior:

♦ The deck acts as a diaphragm →
all piers move similarly

♦ Practically, no danger of deck fall

Disadvantages

● Sensitive to differential settlements of piers

● Cannot accommodate tectonic movements
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Structural systems

Decks with Gerber beams

Advantages

● Best balancing of moments 
between spans and supports

Disadvantages

● Serious danger of deck fall during earthquakes due to narrow 
supports

● Special connecting systems required to reduce possibility of fall
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Pier-to-deck connections

Monolithic

Advantages

● Small displacements (stiff 
structures)

Disadvantages

● Development of seismic 
moments at the deck

● Thermal variations, 
shrinkage and creep 
produce deformation of the 
piers

Through bearings

Advantages

● Flexible systems  type of 
seismic isolation

Disadvantages

● Large seismic 
displacements (danger of 
deck fall)

● Piers behave as cantilever 
 large moments at the 
base
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Pier-to-deck connections

Connection through bearings

● Types of bearings

♦ Laminated elastomeric 

bearings

Allow horizontal displacements 

and rotations

♦ Pot bearings

Allow only rotations

♦ Sliding bearings

Can be elastomeric or pot bearings 

with sliding mechanism in one or 

in both directions
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Pier-to-deck connections (cont’d)

Seismic stoppers

● Restrict the displacements in order to avoid deck fall

● Typical mechanisms:

♦ Bumpers

♦ Cables

♦ Dowels - sockets 
(τόρμος – εντορμία)

● Usually are activated for large displacements only

I. N. Psycharis  “Seismic design of bridges” 24

Types of piers

● Wall-type

● Single-column

● Frame (in transverse direction only)

● Hollow cross section
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Types of foundation

● Shallow foundation

♦ Only on stiff soil

♦ Large excavations required

● Pile foundation

♦ Can be applied in all types of soil (except rock)

♦ Good seismic behaviour

● Extended-pile foundation (κολωνοπάσσαλοι)

♦ No pile cap,  no excavations

♦ Cannot bear large base moments

♦ Provides partial fixation at the base of the piers

● Shaft foundation

♦ Only on stiff and rocky soils
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Damage from earthquakes
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Fall of deck
Caused by large displacements and 
insufficient length of support at the 
piers
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Failure of piers

A. Flexural failure

Hanshin Express-way 
Kobe Earthquake, Japan, 1995
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Failure of piers

B. Shear failure
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Rupture of crossing faults
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Foundation / soil failure

1 m lateral movement of pier 
due to soil liquefaction
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Other reasons

Damage at construction joints
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Seismic design
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General principles of bridge design

● In general, bridges are simple structures from the structural 
point of view. However, they are also sensitive structures.

● Beyond the seismic analysis, the design of bridges must also 
include:

♦ Proper detailing for ductile behaviour of the piers even if 
elastic analysis is performed)

♦ Check of displacements (bearings, joints, sitting areas)

♦ Check of ground failure (foundation of piers, infills behind 
the abutments)

♦ Check of liquefaction potential or land-sliding in the wider 
area that might affect the structure



I. N. Psycharis  “Seismic design of bridges” 35

Seismic design

● Elasto-plastic design is performed (in general).

● Plastic hinges are allowed only in the piers. The bridge deck 
shall remain within the elastic range.

● Flexural hinges need not necessarily form in all piers. However 
the optimum behaviour is achieved if plastic hinges develop 
approximately simultaneously in as many piers as possible.

● As far as possible the location of plastic hinges should be 
selected at points accessible for inspection and repair.

● Brittle modes of failure (e.g. shear failure) are not allowed. 

● Plastic hinges shall not be formed in reinforced concrete 
sections where the normalized axial force is large.
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Codes

● Eurocode 8: “Design of structures for earthquake resistance”  
Part 2: Bridges.

● Greek

♦ “Guidelines for the seismic design of bridges”, Circular
Ε39/99 (∆ΜΕΟγ/ο/884/24.12.1999 Υ.ΠΕ.ΧΩ.∆.Ε.).

♦ “Guidelines for the seismic isolation of bridges”, 
Υ.ΠΕ.ΧΩ.∆.Ε.

Download from: 
http://www.iabse.gr/en/en_EngineeringIssues/en_Standards.htm
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Seismic action

Elastic response spectrum (Se=spectral acceleration)
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where:
ag = γIagR

≥ 0.55 

= damping 
coefficient (ζ in %)

S = soil factor
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Seismic action

Ground acceleration

Importance factor 
(E39/99)

Soil factor
and
characteristic
periods

Seismic Hazard Zone agR (g)

Ζ1 0.16

Ζ2 0.24

Ζ3 0.36

Bridge importance γΙ

Less than average 0.85

Average 1.00

Greater than average 1.30

Ground type ΤΒ (sec) ΤC (sec) ΤD (sec) S

Α 0.15 0.40 2.50 1.00

Β 0.15 0.50 2.50 1.20

C 0.20 0.60 2.50 1.15

D 0.20 0.80 2.50 1.35

E 0.15 0.50 2.50 1.40
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Ground acceleration

ag,R = reference peak ground acceleration on type A ground.

● The reference peak ground acceleration for each seismic zone, 
corresponds to the reference return period TNCR of the seismic 
action for the no-collapse requirement (or equivalently the 
reference probability of exceedance in td = 50 years, PNCR). 

The values assigned to each seismic zone correspond to: 

PNCR = 10%, i.e. TNCR = 475 years.

● An importance factor γI = 1,0 is assigned to the reference 
return period TNCR. 

● For return periods other than the reference, γI  1,0 and the 
design ground acceleration on type A ground, ag, is equal to: 

ag = γIagR

dt/1
NCR

NCR
)P1(1

1
T




I. N. Psycharis  “Seismic design of bridges” 40

Ground types

Ground 
type

Description of stratigraphic profile vs,30
(m/sec)

NSPT
(bl./30 cm)

cu
(kPa)

Α Rock or other rock-like geological 
formation, including at most 5 m of weaker 
material at the surface.

> 800 - -

Β Deposits of very dense sand, gravel, or 
very stiff clay, at least several tens of 
metres in thickness, characterised by a 
gradual increase of mechanical properties 
with depth.

360 - 800 > 50 > 250

C Deep deposits of dense or medium dense 
sand, gravel or stiff clay with thickness 
from several tens to many hundreds of 
metres.

180‐ 360 15 - 50 70 - 250

D Deposits of loose-to-medium cohesionless
soil (with or without some soft cohesive 
layers), or of predominantly soft-to-firm 
cohesive soil.

< 180 < 15 < 70

E A soil profile consisting of a surface 
alluvium layer with vs values of type C or D 
and thickness varying between about 5 m 
and 20 m, underlain by stiffer material 
with vs > 800 m/s.
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Design spectrum

Period, T
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Blue line: Se = elastic spectrum 

For damping  5%, the 
correction factor η
must be used.

Red line: Sd = design spectrum 
for elastic analysis with 
behaviour factor q

No correction for 
damping  5%

I. N. Psycharis  “Seismic design of bridges” 42

Seismic behaviour
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Design for ductile behaviour

● Preferred in regions of moderate to high seismicity (economic 
and safety reasons)

● In bridges of ductile behaviour it is expected that flexural 
plastic hinges will be formed, normally in the piers, which act 
as the primary energy dissipating components.

● As far as possible the location of plastic hinges should be 
selected at points accessible for inspection and repair

● The bridge deck must remain within the elastic range

● Plastic hinges are not allowed in reinforced concrete sections 
where the normalised axial force ηk exceeds 0,6

● Flexural hinges need not necessarily form in all piers. However 
it is desired that plastic hinges develop approximately 
simultaneously in as many piers as possible

● Piers and abutments connected to the deck through sliding or 
flexible elastomeric bearings must, in general, remain within 
the elastic range.
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Limited ductile/essentially elastic behaviour

● Corresponds to a behaviour factor q ≤ 1,5

● No significant yield appears under the design earthquake

● For bridges where the seismic response may be dominated by 
higher mode effects (e.g cable-stayed bridges) or where the 
detailing for ductility of plastic hinges may not be reliable (e.g. 
due to the presence of high axial force or of a low shear ratio), 
it is preferable to select an elastic behaviour (q = 1).
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Behaviour factor

Type of Ductile Members q

Reinforced concrete piers:
Vertical piers in bending (αs ≥ 3,0)
Inclined struts in bending

3,5 λ(αs)
2,1 λ(αs)

Steel Piers:
Vertical piers in bending
Inclined struts in bending
Piers with normal bracing
Piers with eccentric bracing

3,5
2,0
2,5
3,5

Abutments rigidly connected to the deck:
In general
“Locked-in” structures

1,5
1,0

Arches 2,0

αs= L/h is the shear ratio of the pier, where L is the distance from the plastic 
hinge to the point of zero moment and h is the depth of the cross section in 
the direction of flexure of the plastic hinge.

For αs ≥ 3 λ(αs) = 1,0
For 3 > αs ≥ 1,0 λ(αs) = (αs/3)1/2
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Behaviour factor

● For 0.3  ηk  0.6, a reduced behaviour factor must be used:

௥ݍ ൌ ݍ െ
௞ߟ െ 0.3
0.3

ݍ െ 1

● The values of the q-factor of the above table may be used only 
if the locations of all the relevant plastic hinges are accessible 
for inspection and repair. Otherwise: ݍ௥ ൌ 0.6 ∙ ݍ ൒ 1.0

● For piles designed for ductile behaviour:

♦ q = 2,1 for vertical piles 

♦ q = 1,5 for inclined piles

● “Locked-in” structures: their mass follows, essentially, the 
horizontal seismic motion of the ground (T ≤ 0,03 sec): q = 1

● Bridges rigidly connected to both abutments, which are 
laterally encased, at least over 80% of their area, in stiff 
natural soil formations with T ≥ 0,03 sec: q = 1.5

● Vertical direction: q = 1
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Piers with elastic bearings

P

∆

Py = Pc,y

∆c,y
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Piers with elastic bearings

System ductility:

Let f be the ratio of the total 
(deck) displacement over the 
corresponding column 
displacement in the elastic region 
(up to the yield of the pier). At 
yield:

Then

by,c

bu,c

y,tot

u,tot
f,∆ ∆∆

∆∆
∆
∆

μ





1f
∆
∆

∆
∆

1
∆

∆∆
∆
∆

f
y,c

b

y,c

b

y,c

by,c

y,c

y,tot 




f
1fμ

μ c,∆
f,∆




y,c

u,c
c,∆ ∆

∆
μ where is the ductility of the column



I. N. Psycharis  “Seismic design of bridges” 49

Piers with elastic bearings

The above relation can be written as:

The value of f depends on the relative stiffness of the bearings 
w.r.t. the stiffness of the pier: For “soft” bearings, f is large and 
the ductility of the pier can attain large values. 

Example

● f=5 and μ∆,f =3.5 (design ductility). Then:

μ∆,c = 1+ 5∙(3.5-1) = 13.5

● f=5 and we want μ∆,c =3.5. Then, the design must be 
performed for:

μ∆,f = (3.5+5-1)/5 = 1.5

)1μ(f1μ f,∆c,∆ 
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Piers with elastic bearings

For this reason, EC8 – part 2 (bridges) considers that: 

When the main part of the design seismic action is resisted by 
elastomeric bearings, the flexibility of the bearings imposes a 
practically elastic behaviour of the system.

The allowed values of q are:

q  1.5 according to EC8

q = 1.0 according to E39/99
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Displacement ductility & Curvature ductility

Moments         Curvatures             Displacements

Lh

Cantilever pier
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Displacement ductility & Curvature ductility

After yield

Cp = Cu – Cy and   ∆p = ∆u – ∆y

θp = Lh Cp = Lh (Cu-Cy)

∆p = ∆p,1 + ∆p,2

(hardening)

(plastic rotation)

Therefore
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Displacement ductility & Curvature ductility

By definition

Finally

where  λ = Lh / L

Example: λ = 0.1, μ∆ = 3.0  μc = 7.0
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Chord rotation ductility

Moments         Curvatures             Displacements

θu

L

L = length between 
the plastic hinge 
and the section of 
zero moment

θy =∆y/L = CyL/3

θp,u= Lh(Cu-Cy)(1-λ/2)

θu =θy + θp,u

μθ =θu/θy

For longitudinal reinforcement of characteristic yield stress fyk (in MPa) and 
bar diameter ds, the plastic hinge length Lh may be assumed as follows:

Lh = 0,10L + 0,015fykds
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Model of analysis

Masses

● Permanent masses (with their characteristic value)

● Quasi-permanent values of the masses corresponding to the 
variable actions: ψ2,1 Qk,1, where Qk,1 is the characteristic value 
of traffic load and

♦ ψ2,1 = 0,2 for road bridges

♦ ψ2,1 = 0,3 for railway bridges 

● When the piers are immersed in water, an added mass of 
entrained water acting in the horizontal directions per unit 
length of the immersed pier shall be considered 
(see Annex F of EC8-2)
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Model of analysis

Stiffness of reinforced concrete ductile members

● The effective stiffness of ductile concrete components used in 
linear seismic analysis should be equal to the secant stiffness 
at the theoretical yield point.

● In the absence of a more accurate assessment, the 
approximate methods proposed in Appendix C of EC8-2 may 
be used.

● E39/99 proposes: 

♦ At piers expected to yield, (ΕΙ)eff=300MRd,hd, where ΜRd,h is 
the moment of resistance and d is the height of the cross 
section at the place of the plastic hinge.

♦ At piers expected to respond elastically, the mean value 
between the above value and the one that corresponds to 
the uncracked cross section. 
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Model of analysis

Stiffness of reinforced concrete ductile members -
Appendix C of EC8-2 

● Method 1

Jeff = 0,08Jun + Jcr

♦ Jun = moment of inertia of uncracked section

♦ Jcr = My/(EcCy) = moment of inertia of cracked section

● Method 2

EcJeff = νMRd/Cy

♦ ν = 1,20 = correction coefficient reflecting the stiffening 
effect of the uncracked parts of the pier

♦ Cy = 2,1 εsy/d for rectangular sections 
Cy = 2,4 εsy/d for circular sections 

where d is the effective depth of the section
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Model of analysis

Stiffness of elastomeric bearings

where:

G = shear modulus

G varies with time, temperature etc. Two cases:

(a) Gmin = Gb; (b) Gmax = 1,5 Gb

where Gb = 1.1 Gg with Gg = 0.9 N/mm2 = 900 KPa.

Ab= effective area of bearing

Αb = (bx-dEd,x)( by-dEd,y) for rectangular bearings of dimensions 
bxby, where dEdx, dEdy are the seismic design displacements of 
the bearing in x- and y-direction, respectively. 

T = total thickness of elastomer

T
AG

K b
b



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Design displacements

Design seismic displacement

where

dEe= displacement from the analysis

η = damping correction factor

q for T  T0 = 1,25 TC
μd =

for T < T0

Total design displacement

where

dG = displacement due to the permanent and quasi-permanent 
actions

dT = displacement due to thermal movements

EedE dμηd 

4q51
T
T

)1q( 0 

T2GEEd dψddd 
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Second order effects

Approximate methods may be used for estimating the influence 
of second order effects on the critical sections (plastic hinges):

where NEd is the axial force and dEd is the relative transverse 
displacement of the ends of the member

EdEd Nd
2

q1
M∆ 



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Design seismic combination

The design action effects Ed in the seismic design situation shall 
be derived from the following combination of actions:

Gk "+" Pk "+" AEd "+" ψ21Q1k "+" Q2

where “+” means “to be combined with” and

Gk = the permanent loads with their characteristic values

Pk = the characteristic value of prestressing after all losses

Aed = is the most unfavourable combination of the components 
of the earthquake action

Q1k = the characteristic value of the traffic load

Ψ21 = the combination factor

Q2 = the quasi permanent value of actions of long duration (e.g. 
earth pressure, buoyancy, currents etc.)
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Design seismic combination

● Seismic action effects need not be combined with action 
effects due to imposed deformations (temperature variation, 
shrinkage, settlements of supports, ground residual 
movements due to seismic faulting).

● An exception to the rule stated above is the case of bridges in 
which the seismic action is resisted by elastomeric laminated 
bearings. In this case, elastic behaviour of the system shall be 
assumed and the action effects due to imposed deformations 
shall be accounted for.

● For wind and snow actions, the value ψ21 = 0 shall be 
assumed.

I. N. Psycharis  “Seismic design of bridges” 64

Capacity design

Purpose

To design structures of ductile behaviour ensuring the hierarchy 
of strengths of the various structural components necessary for 
leading to the intended configuration of plastic hinges and for 
avoiding brittle failure modes.

Design procedure
Use “capacity design effects”:
♦ For the design of all members intended to remain elastic 
♦ Against all brittle modes of failure. 

Definition

“Capacity design effects” result from equilibrium conditions at 
the intended plastic mechanism, when all flexural hinges have 
developed their flexural resistance including overstrength.
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Capacity design

Capacity design is applied:

● For the design of sections that must remain within the elastic 
range (e.g. deck).

● For the design of all members against non-ductile failure 
modes (shear of members and shear of joints adjacent to 
plastic hinges).

● For the design of the foundation (except of pile foundation, 
where plastic hinges are allowed). 

● For the design of seismic stoppers and for bearings, links and 
holding-down devices used for securing structural integrity.

The capacity design effects need not be taken greater than 
those resulting from the design seismic combination where 
the design effects AEd are multiplied by the q factor used.
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Capacity design

Overstrength moment of a section

M0 = γ0MRd

where

γ0 = overstrength factor

for concrete members: γ0 = 1,35 (EC8 – part 2)
= 1,40 (E39/99)

MRd = design flexural strength of the section, in the selected 
direction and sense, based on the actual section geometry 
and reinforcement

Piers with elastomeric bearings

In bridges intended to have ductile behaviour, in the case of 
piers with elastomeric bearings where no plastic hinges are 
intended to form, the capacity design effects shall be calculated 
on the basis of the maximum deformation of the elastomeric 
bearings and a 30% increase of the bearing stiffness.
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Calculation of capacity design effects

The following procedure shall be applied for each of the two 
horizontal directions of the design seismic action.

Step 1

Calculation of the design flexural strengths MRd and of the 
overstrength moments M0 of the sections of the intended plastic 
hinges, corresponding to the selected sense and direction of the 
seismic action (AE).

● The strengths shall be based on the actual dimensions of the 
cross-sections and the final amount of longitudinal 
reinforcement. 

● The calculation shall consider the interaction with the axial 
force and eventually with the bending moment in the other 
direction, both resulting from the combination G "+“ AE where 
G is the sum of the permanent actions (gravity loads and post-
tensioning) and AE is the design seismic action.
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Calculation of capacity design effects

Example

Permanent actions G:

top: Μx-x,t =-20 KNm
My-y,t =-120 KNm
Nt =3000 KN

bottom: Μx-x,b =30 KNm
My-y,b =150 KNm
Nb =3500 KN

shear: Vx =27 KN

Seismic action AE:

top: Μx-x,t =-300 KNm
My-y,t =-1200 KNm
Nt =40 KN

bottom: Μx-x,b =450 KNm
My-y,b =1500 KNm
Nb =40 KN

shear: Vx =270 KN

10,0 
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Calculation of capacity design effects

Example (cont’d)

The design flexural strengths (ΜRd,y-y) are calculated considering 
the interaction with the axial force and the bending moment in 
the other direction:

top: Νt = 3000+40 = 3040 KN
Mx-x,t = -20-300 = -320 KNm

bottom: Νb = 3500+40 = 3540 KN
Mx-x,b = 30+450 = 480 KNm

Let us assume that, for these values and the actual 
reinforcement, the resulting values are:

top: MRd,t = 1400 KNm
bottom: MRd,b = 1800 KNm

The corresponding overstrength moments are (for γ0 = 1,40):

top: M0,t = 1.401400 = 1960 KNm
bottom: M0,b = 1.401800 = 2520 KNm

10,0 

1400 1960

2520 1800
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Calculation of capacity design effects

Step 2

Calculation of the variation of action effects ∆AC of the plastic 
mechanism, caused by the increase of the moments of the 
plastic hinges (∆M), from the values due to the permanent 
actions (MG) to the moment overstrength of the sections (M0).

∆M = γ0MRd – MG

The effects ∆AC may in general be estimated from equilibrium 
conditions.

Example (cont’d):

top: ∆Mt = 1960-120 = 1840 KNm
bottom: ∆Mb = 2520-150 = 2370 KNm

The corresponding variation of the shear force is:

KN421
10

23701840
V∆ C 



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Calculation of capacity design effects

Step 3

The final capacity design effects AC shall be obtained by super-
imposing the variation ∆AC to the permanent action effects FG:

AC = AG + ∆AC

Example (cont’d):

Capacity design shear: VC = 27+421 = 448 KN

Simplification

When the bending moment due to the permanent actions at the 
plastic hinge is negligible compared to the moment overstrength
of the section (MG << γ0MRd), the effects ∆AC can be directly 
estimated from the effects AE of the design earthquake action.

For example, for cantilever piers, the capacity design shear is:

E
E

Rd0
CC V

M
Mγ

V∆V 
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Earth pressure on abutments and retaining walls

Seismic coefficients

● Horizontal: kh = αS/r

● Vertical: kv = 0,5kh

where

α = ag/g (ag = design ground acceleration on ground type A)

S = soil coefficient

r = coefficient that depends on the amount of permanent 
displacement which is both acceptable and actually 
permitted by the adopted structural solution

Type of retaining structure r

Free gravity walls that can accept a displacement up to dr = 300 α⋅S (mm) 2,0

Free gravity walls that can accept a displacement up to dr = 200 α⋅S (mm) 1,5

Flexural reinforced concrete walls, anchored or braced walls, reinforced 
concrete walls founded on vertical piles, restrained basement walls and bridge 
abutments

1,0
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Earth pressure on abutments and retaining walls

Flexible abutments and walls

Total pressure (static + dynamic):

where

H = wall height

K = earth pressure coefficient. It may 
be computed from the Mononobe
– Okabe formula (EC8 – Part 5, 
Appendix E)

kv = vertical seismic coefficient

γs = specific weight of the soil

2
vsd HK)k1(γ

2
1

E 

H

pd = γs(1kv)KH

The point of application is considered at height equal to 0,4H.
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Earth pressure on abutments and retaining walls

Rigid abutments and walls

According to Eurocode 8-part 5:

● Neutral static earth pressure

where K0 = 1 – sinφ

● Additional pressure (dynamic):

The point of application may be 
taken at mid-height

2
sd HγSαE∆ 

2
0s0 HKγ

2
1

E 

H

pst = γsK0H

H

pd = αSγsH
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Earth pressure on abutments and retaining walls

Rigid abutments and walls

According to E39/99:

● Neutral static earth pressure E0

● Two cases for the additional 
(dynamic) pressure:

♦ Limited flexible walls:

Uniform distribution of pressure:

♦ Non-deformable walls:

▪ Top:

▪ Bottom:

Hγα75,0p sd 

H

H

pd = 0,5αSγsH

pd = 1,5αSγsH

pd = 0,75∙αγsH

Hγα50,1p sd 

Hγα50,0p sd 
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Abutments flexibly connected to the deck

The following actions, assumed to act in phase, should be taken 
into account:

● Earth pressures (flexible abutments)

When the earth pressures are determined on the basis of an 
acceptable displacement of the abutment (r>1), it should be 
ensured that this displacement can actually take place before a 
potential failure of the abutment itself occurs. For this reason, 
the body of the abutment is designed using the seismic part of 
the earth pressure increased by 30%.

● Inertia forces acting on the mass of the abutment and on the 
mass of earthfill lying over its foundation determined using the 
design ground acceleration ag.

● Actions from the bearings determined:
♦ From capacity design effects if a ductile behaviour has been 

assumed for the bridge. 
♦ From the reaction on the bearings resulting from the seismic 

analysis if the bridge is designed for q = 1,0.
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Abutments rigidly connected to the deck

The following actions should be taken into account:

● Inertia forces acting on the mass of the structure which may 
be estimated using the Fundamental Mode Method. A 
behaviour factor q = 1,5 shall be used.

Abutments buried in strong soils for more than 80% of their 
height can be considered as fully locked-in. In that case, q = 1
shall be used and the inertia forces are determined on the 
basis of the design ground acceleration ag.

● Static earth pressures acting on both abutments (E0).

● Additional seismic earth pressures ∆Ed = Ed – E0. 

The pressures ∆Ed are assumed to act in the same direction on 
both abutments.

Reactions on the passive side may be taken into account, 
estimated on the basis of horizontal soil moduli corresponding 
to the specific geotechnical conditions.
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Resistance verification of concrete sections

In general, verifications of shear resistance shall be carried 
out in accordance with par. 6.2 of EC 2 with some 
additional rules.

For the flexural resistance of sections, the following 
conditions shall be satisfied

Structures of limited ductile behaviour (q  1,5)

Ed ≤ Rd

Ed = the design action effect under the seismic load 
combination including second order effects

Rd = the design flexural resistance of the section.
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Resistance verification of concrete sections

Structures of ductile behaviour

● Flexural resistance of sections of plastic hinges:

MEd ≤ MRd

MEd = the design moment under the seismic load combination, 
including second order effects

MRd = the design flexural resistance of the section.

● Flexural resistance of sections outside the region of plastic 
hinges:

MC ≤ MRd

MC = the capacity design moment

MRd = the design resistance of the section, taking into account 
the interaction of the corresponding design effects (axial 
force and when applicable the bending moment in the 
other direction).
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Minimum overlap length

At supports, where relative displacement between supported and 
supporting members is intended under seismic conditions, a 
minimum overlap length, Lov, shall be provided, which may be 
estimated as:

Lov = Lm + deg + des

where:

Lm = the minimum support length securing the safe transmission 
of the vertical reaction with Lm  40 cm.

deg = the effective displacement of the two parts due to 
differential seismic ground displacement, which can be 
estimated from the procedure given in the following.

des = the effective seismic displacement of the support due to the 
deformation of the structure, which can be estimated from 
the procedure given in the following.
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Minimum overlap length

Calculation of deg

deg = Leff∙vg/ca  2∙dg

where:

Leff = the effective length of deck, taken as the distance from the 
deck joint in question to the nearest full connection of the 
deck to the substructure.

“full connection” means a connection of the deck to a 
substructure member, either monolithically or through fixed 
bearings or seismic links.

vg = peak ground velocity, estimated from the design ground 
acceleration ag using the relation: vg = 0,16∙S∙TC∙ag.

ca = apparent phase velocity of the seismic waves in the ground.

dg = design value of the peak ground displacement.
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Minimum overlap length

Calculation of des

● For decks connected to piers either monolithically or through 
fixed bearings, acting as full seismic links: des = dEd, where dEd is 
the total longitudinal design seismic displacement.

● For decks connected to piers or to an abutment through 
seismic links with slack equal to s: des = dEd + s.

In the case of an intermediate separation joint between two 
sections of the deck, Lov should be estimated by taking the 
square root of the sum of the squares of the values calculated for 
each of the two sections of the deck. In the case of an end 
support of a deck section on an intermediate pier, Lov should be 
estimated as above and increased by the maximum seismic 
displacement of the top of the pier dE.
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Seismic isolation of bridges
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Concept

Application of special isolating system, aiming to reduce 
the response due to the horizontal seismic action.

The isolating units are arranged over the isolation 
interface, usually located under the deck and over the top 
of the piers/abutments.

Methods

● Lengthening of the fundamental 
period of the structure
♦ reduces forces 
♦ increases displacements

● Increasing the damping
♦ reduces displacements
♦ may reduce forces

● Combination of the two effects.
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Basic requirements

Isolators

Each isolator unit must provide a single or a combination of the 
following functions:

● vertical–load carrying capability combined with increased 
lateral flexibility and high vertical rigidity

● energy dissipation (hysteretic, viscous, frictional)

● re-centring capability

● horizontal restraint (sufficient elastic rigidity) under non-
seismic service horizontal loads

Increased reliability is required for the strength and integrity of 
the isolating system, due to the critical role of its displacement 
capability for the safety of the structure.

System

The seismic response of the superstructure and substructures 
shall remain essentially elastic.

I. N. Psycharis  “Seismic design of bridges” 86

Isolators with hysteretic behaviour

dy = yield displacement

dbd= design displacement 
of the isolator that 
corresponds to the 
design displacement 
dcd of the system

Fy = yield force at 
monotonic loading

Fmax=force at maximum 
displacement dbd

Κe = elastic stiffness

Κp = post-elastic (tangent) 
stiffness

Keff= effective (secant) 
stiffness at maximum 
displacement

Dissipated energy per cycle at 
the design displacement dcd:

ED = 4(Fydbd - Fmaxdy)

F

d

Fy

dy dbd

KeffKe

Kp

Fmax

ED
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Lead Rubber Bearings (LRB)

dy = dLy = yield displacement of lead core

Fy = FLy(1+KR/KL) where FLy = yield force of lead core

Κe = KR+KL = elastic stiffness

Κp = KR = post-elastic stiffness

d

FLy

dy=dLy

Lead

Rubber

dbd

total 
response

Ke=KR+KL

KR

KL

Kp=KRFy

Elastomer

Lead 
core

Fmax
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Isolators with viscus behaviour

The force is zero at the 
maximum displacement, 
therefore viscous isolators 
do not contribute to the 
effective stiffness of the 
isolating system

F = Cvα

For sinusoidal motion:

d(t) = dbdsin(ωt)

F(t) = Fmax[cos(ωt)]α

Fmax = C∙(dbd∙ω)α

Dissipated energy per cycle:

ED = λ(α)Fmaxdbd

F

d

F(t)

d(t) dbd

Fmax

ED

α = 1

α < 1

λ(α) = 2(2+α)Γ(1+0,5α)/Γ(2+α)

Γ() is the gamma function
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Isolators with friction behaviour

A. Flat sliding surface

Fmax= μdNSd

where:

μd = dynamic friction 
coefficient

NSd= normal force through 
the device

Such devices can result in 
substantial permanent 
offset displacements. 
Therefore, they should be 
used in combination with 
devices providing adequate 
restoring force.

Dissipated energy per cycle:

ED = 4Fmaxdbd

F

d

dbd

Fmax

ED

NSd
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Isolators with friction behaviour

B. Spherical sliding 
surface of radius Rb

F0 = μdNSd

Fmax= μd∙NSd + Κp∙dbd

Κp = ΝSd/Rb

Dynamically, the device 
behaves as an inverted 
pendulum with period 

F

d

F0

dbd

Fmax

ED

Kp

Dissipated energy per cycle:

ED = 4F0dbd
g

R
π2T b

Friction Pendulum System (FPS)
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Fundamental mode spectrum analysis

● The deck is assumed rigid

● The shear force transferred through the isolating interface shall 
be estimated considering the superstructure to behave as a 
single degree of freedom system using:

♦ the effective stiffness of the isolation system, Keff

♦ the effective damping of the isolation system, ζeff

♦ the mass of the superstructure, md = Wd/g

♦ the spectral acceleration Se(Teff, ζeff) that corresponds to the 
effective period Teff and the effective damping ζeff
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Fundamental mode spectrum analysis

● Effective stiffness:

Keff = ΣKeff,i

where Keff,i is the composite stiffness of the isolator unit and 
the corresponding substructure (pier) i.

In the calculation of the composite stiffness of each pier, the 
flexibility of the foundation must also be considered:

where

Κb,eff= the effective stiffness of the isolators of the pier
Κc,i = stiffness of the column of the pier
Κt,i = translational stiffness of the foundation in the horizontal 

direction
Κr,i = rotational stiffness of the foundation
Ηi = height of the pier measured from the level of the 

foundation

i,r

2
i

i,ti,eff,bi,ci,eff K
H

K
1

K
1

K
1

K
1


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Fundamental mode spectrum analysis

● Total effective damping of the system:

where 

ΣED,i is the sum of the dissipated energies of all isolators i in a 
full deformation cycle at the design displacement dcd.

Then, the damping correction factor is:

● Effective period of the system:

2
cdeff

i,D
eff dK

E
π2
1

ζ


 

eff

d
eff K

m
π2T 

eff
eff ζ05,0

10,0
η



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Fundamental mode spectrum analysis

● Spectral acceleration and design displacement (for Teff > TC)

where

Τeff Se dcd

TC  Teff < TD

TD  Teff

eff

C
effg T

T
5.2ηSa 

2
eff

DC
effg T

TT
5.2ηSa




C
C

eff d
T
T



C
C

D d
T
T



2
Ceffg2C TηSa

π
625,0

d 
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Multi-mode spectrum analysis

● The effective damping ζeff is applied only to modes having 
periods higher than 0,8 Teff. For all other modes, the damping 
ratio corresponding to the structure without seismic isolation 
should be used.

The effective damping ζeff and the effective period Teff are 
calculated as in the fundamental mode spectrum analysis.

● The design displacement, dd,m, and the shear force, Vd,m, that 
are transferred through the isolation interface, calculated from 
the multi-mode spectrum analysis, are subject to lower bounds
equal to 80% of the relevant effects dd,f and Vd,f calculated in 
accordance with the fundamental mode spectrum analysis. In 
case that this condition is not met, the effects of the multi-
mode spectrum analysis will be multiplied by 0,80∙dd,f/dd,m and 
0,80∙Vd,f/Vd,m respectively. If the bridge cannot be 
approximated (even crudely) by a single degree of freedom 
model, the effects dd,f and Vd,f can be obtained from the 
fundamental mode.
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Verifications

Isolating system

● In order to meet the required increased reliability, the isolating 
system shall be designed for increased displacements: 

dd,in = γISdd

where γIS = 1,50 is an amplification factor applicable only to 
the design displacements of the isolation system.

● All components of the isolating system shall be capable of 
functioning at the total maximum displacement:

dmax = dd,in + dG + ½dT

where dG is the displacement due to the permanent and quasi-
permanent actions and dT is the displacement due to thermal 
movements.

● No lift-off of isolators carrying vertical force is allowed under 
the design seismic combination.
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Verifications

Substructures and superstructure

● Derive the internal seismic forces EE,A from an analysis with 
the seismic action for q = 1.

● Calculate the design seismic forces EE, due to seismic action 
alone, that correspond to limited ductile / essentially elastic 
behaviour, from the forces EE,A:

EE = EE,A / q

with q  1,5.

● All structure members should be verified for:

♦ Forces EE in bending with axial force

♦ Forces EE,A in shear

● The foundation will be verified for forces EE,A.


