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Abstract-Boundary Element Method formulations of elastodynamic problems under plane strain/plane 
stress conditions arc presented. The formulations arc performed in the time domain allowing consideration 
of loads with transient time variation. The advantages, e5ciency and accuracy of the methods arc depicted 
through comparative studies of a representative soil-structure interaction problem. 

INTRODIJCIION 

In recent years the Boundary Element Method 
(BEM) has become increasingly popular for the 
solution of linear elastodynamic problems [l]. Its 
popularity can be attributed primarily to the reduc- 
tion of dimensionality of the problems, high accuracy 
of results and automatic consideration of the radi- 
ation conditions at infinity [2]. 

The earlier BEM studies of wave propagation 
problems have been based on frequency domain 
formulations. Representative are the works of 
Banaugh and Goldsmith [3] and Niwa et al. [4] in 
steady-state wave propagation problems. Cruse and 
Rizzo [5] and Manolis and Beskos [6] have succcss- 
fully applied the BEM in conjunction with the Lap- 
lace transform to study plane wave propagation and 
stress concentration problems. 

Integral quation solutions of elastodynamic prob- 
lems in the time domain have been presented by Cole 
et al. [fl and Mansur and Brebbia [8] for the scalar 
wave equation. Niwa et al. [9] and Manolis [lo] 
employed a three-dimensional BEM to investigate 
the scattering of elastic waves around cylindrical 
openings under conditiops of plane strain. Spyrakos 
and &skos [l l-131 developed a highly efficient BEM 
formulation in conjunction with the two-dimensional 
Stokes’ solution for the infinite space to study the 
transient response of surface and embedded strip 
foundations subjected to external forces and/or 
obliquely incident seismic waves. A two-dimensional 
BEM based on weighted residual considerations to 
solve wave propagation problems under mo initial 
conditions and zero body forces has been recently 
presented by Mansur [14]. Commencing from similar 
considerations, Antes [IS] derived a BEM approach 

to treat general two-dimensional elastodynamic prob- 
lems including the contribution of initial conditions 
and body forces. 

The present study focuses on a close examination 
of the available two-dimensional, time domain BEM 
approaches dealing with general plane stress/plane 
strain elastodynamic problems. Besides a presenta- 
tion of the integral formulations, comparative studies 
are presented based on the solution of a representa- 
tive soil-structure interaction problem. This is fol- 
lowed by a discussion of the obtained results. Con- 
siderable effort is directed to ensure a comparison as 
fair as possible. 

BASIC THEORY 

Under the assumption of small displacement 
theory and conditions of plane strain, the motion in 
a homogeneous, isotropic, linear elastic medium is 
governed by the Navier-Cauchy equations 

<c:- c:)u,J + c:u,,# - ti, = $I,, i,j= 1.2, (1) 

where dots and commas indicate time and space 
differentiations, respectively, b, is the body force, 
p denotes the mass density of the medium; c, and cz 
are the dilatational and shear wave velocities, respec- 
tively, which for the case of plane strain are given in 
terms of the LamC constants 1 and p by 

CI = J[(A + 2cc)lp and c2 = JWP ). (2) 

For the case of plane stress the rl has to be replaced 
by 1’= 2.@/(l+ 2~). In a well-posed boundary 
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value problem eqn (1) must be accompanied by 
appropriate initial and boundary conditions: 

Ui(X, t) = l&(X); 

ri,(X,t)=fi~(x) for r=r, in LI+r 

r+(x, f) = lii(X*f) for t > lo on rl 

Ux, t) = [MC: - 2c:)uj,j + c!<ui,k + uk,i)lnk 

= T,(x,r) for I > t, on Tz, (3) 

where r = rl + r, and R denote the boundary and 
the interior of the domain, respectively, and the bar 
indicates that the values are known. 

The fundamental solution of eqn (I), the response 
of an infinite medium to a unit impulse uniformly 
distributed along the line perpendicular to the plane 
R at a point { and acting at time r, is given by [15,16] 

2C;P - r2 
X 

R2 
r*,ry 

za U!(fl+ @” J i ’ 

R,=(~~t'*-r~)~~~, a =1,2 

(4 

t’=-t --T , (5) 

where H is the Heaviside function and r is the 
distance Ix - { 1 between a field point x and a source 
point C. The fundamental solution, eqn (4), can be 
incorporated in integral formulations of boundary 
value problems in the time domain and under condi- 
tions of plane strain. This subject is elaborated in the 
following sections. 

INTEGRAL FORMULATION I 

Combining the fundamental solution, eqn (4), with 

the elastodynamic reciprocal theorem, eqn (1) with 
the conditions (3) can be replaced by the following 
integral identity fl6]: 

+ (U:“‘b,)dil+p s s < f7 (W) fl Jo 
fl n 

- lip((cjj”)o > dn, (6) 

where on a smooth boundary (4 E r) cii = 6,/2 and 
for interior points (C l n) cli = 8,; the operation * 
denotes time convolution and the tensor T’/“, resulting 
from C$‘) through appropriate spatial differentiations, 
is given in [16]. In order to simplify the presentation 
of the numerical treatment of eqn (6), it is assumed 
that the body forces as well as the initial displace- 
ments and velocities are zero. Thus, the last two 
integrals in eqn (6) vanish. 

The proposed solution process consists of the 
following two steps [ 11, 131: 

(i) evaluation of the response uj due to a single 
rectangular impulse traction t(+ and 

(ii) superposition of the individual impulse re- 
sponses to obtain the total system response. 
These steps are accomplished through a spatial dis- 
cretization requiring division of the boundary r into 
Q line elements, and a time discretixation approxi- 
mating the time variation of the displacements (as 
well as the tractions) as a sequence of rectangular 
impulses of equal duration Ar. The spatial and time 
variation of displacements and tractions over each 
element and time-step are assumed to be constant, 
even though the adaption of linear or higher-order 
variations is possible at the expense of additional 
computational effort. 

The rectangular impulse traction acting on an 
element at the time r = II At can be expressed as 

fmRji(x,r) = {H[r’ - (n - t)At] 

- H[t’ - nAt]} t;(x), (7) 

where t; denotes the intensity of the traction vector 

at time t = (n - 0S)At. 
In view of eqn (7), eqn (4) takes the form 

- 2 [H(r’ - r/q) sp) - H(t’ - r/Q) syq 

+$(I’-r/c,)Sf’ , 
2 I 

withn=1,2 ,..., Nandq=l,2 ,..., Q.Thefunc- 
tions SIJ) (i = 1,2; j = 1,2,3) are given explicitly in 
Appendix 1. The corresponding discretixed form g 
of the tensor q0 can be obtained through spatial 
differentiations as indicated in [13,16]. 

Finally, with the aid of eqn (7) and the use of nodal 
collocation to account for the spatial variation of 
displacement and tractions at the boundary, the total 
system response to a transient loading can be evalu- 
ated from the following discretized form of eqn (6): 
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where p denotes the center of an arbitrary surface 
element and I=n -m + 1. 

The discretized forms of the kemals CT and Fr are 
characterized by properties of causality, reciprocity 
and translation. These are appropriately used to 
reduce the computations involved in eqn (9).. In a 
well-posed boundary value problem, eqn (9) can be 
employed together with the prescribed displacements 
and tractions to obtain the remaining unknown 
boundary quantities. Once the boundary value 
problem is solved, the displacement and traction 
fields in the interior of the domain R can be easily 
evaluated [ 1,2]. 

INTEGRAL. FORMULATION II 

An alternative general form of the integral qn (6) 
replacing qns (1) and (3) can be obtained by using 
weighted residual considerations in space and time 

P, 14, 151 

(U:“rj- T’!‘u.)dT 
J J 

- ifl( qyo > di-2, (10) 

where ?+ pertains to the t + t with 6 being arbitrarily 
small. 

The second term in the first integral of eqn (10) 
is unsuitable for numerical solution due to the 
singularities appearing in the products of Dirac’s 
distribution 6(c,f’ - r) with gy”. In order to eliminate 
these singularities, the term v uj is integrated by 
parts with respect to time [IS]: 

(4 - 24 x 6, 
a 

x dx d'" 
r., a 

I -;-jy 
PI 

r.. a gp - _Lg;cn 
c, a7 

a r.k a 
+ dx,g;(" - C, zgyc9 II nkuj 

x dT dr + (c: - 2c#,,r.,u%9 

+ C: rs W9 + r..U@9 k J J k 
II 

nktij drdr. (11) 

Similar singularities appear in the part of the 
volume integral containing the term (oj9&. Using a 
transformation in polar co-ordinates and integrating 
by parts, Antes (151 derived an expression amenable 
to numerical solution that accounts for the effect of 
initial conditions and body forces. 

Herein, as stated in the integral formulation Z, the 
initial displacements and velocities as well as the body 
forces are considered to be. zero. This assumption 
facilitates the demonstration of the salient features of 
the numerical treatment of eqn (11). In addition, the 
spatial and time variation of the unknown displace- 
ments and tractions are approximated by the set of 
interpolation functions: 

Uj(r,7)=CC~P(r)rt,(7)u~ 
P In 

rj(r,7) = CC ~P(rk(7)T~, 
P m 

(12) 

where p and M pertain to space and time, respectively. 
In order to maintain as many common features as 
possible with the integral formulation 1, the interpo- 
lation functions &‘(r), $P(r) and p,(r) are assumed 
to be piecewise constant and q,,(r) piecewise linear. 
It should be noted that a piecewise linear or higher- 
order variation of q,,,(7) is necessary to sustain the 
unknown velocity term tij in eqn (1 I). Then, 
according to the approximations adopted (N: = T,, 
S : = T,), the integral identity (10) can be written in 
the following convenient for numerical computations 
fonn: 

c,p,(C,r,) = C 1 [vj(W, t; r.1 + U,2(‘*(r, C; 01 
P I rp m 

x [N,“n,(r) + SFsj(r)] dr 

x [u$n,(r) + @j(r)] dr 

+ U!9b.dQ dr. J J (13) 

The two-dimensional kernel UT@“(r, 4; r,), (a = 1,2), 
is given explicitly in Appendix II, while the expres- 
sions for the kernel vti(r, t; 1,) can be found in Ref. 

WI. 
The above equation corresponds to qn (9) and 

can be incorporated in a time-stepping algorithm 
together with appropriate boundary and equilibrium 
considerations to solve general two-dimensional 
elastodynamic problems. 

C.A.S 24+-B 
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NUMERICAL EXAMPLE 

The methods presented in the previous sections are 
applied to obtain the response of a surface rigid 
strip-foundation. The foundation is subjected to ex- 
ternal forces of a transient time variation as shown in 
Fig. 1. This example serves as a means for a com- 
parison study of the time domain two-dimensional 
BEM formulations presented. A detailed formulation 
of the problem requiring the combination of eqn (9) 
or its counterpart eqn (13) with equilibrium and 
compatibility considerations at the soil foundation 
interface, has been described in [ll-131. Thus, 
the following discussion emphasizes the primary 
differences appearing in the implementation of the 
methods. 

Consider a massless strip-foundation of 5-ft 
(1.524-m) width, (26), subjected to a vertical rectan- 
gular impulse force of intensity 180 k/ft (2626.92 
kN/m). The supporting homogeneous, linear elastic 
soil medium is characterized by a modulus of 
elasticity E = 2.58984 x IO9 lb/ft2 (1.24 x 10” N/m*), 
mass density p = 10.368 Ib/sec2/ft4 (5362.45 kg/m3) 
and Poisson’s ratio v = l/3. Under conditions of 
plane strain, the material properties of the soil are 
related to the Lamt constants appearing in eqn (2) 
through 

n=Ev/(l+v)(l-2v),p=E/2(1+v). (14) 

In all cases the soil foundation interface is discret- 
ized into eight equal elements, as shown in Fig. 2. 
It should be mentioned that results of acceptable 
accuracy can also be obtained for a five-element 
discretization. Relaxed boundary conditions are 
assumed at the contact area. This assumption elimin- 
ates the requirement of the infinite space fundamental 
solution [4] for modeling the surrounding soil surface. 
In addition, it permits decoupling of the vertical, 
horizontal and rocking motions. Thus, the amount of 
computational effort is considerably reduced without 
any significant loss of solution accuracy [ 1 l-1 31. 

In Fig. 3, the foundation vertical impulse response 
is plotted for the first 32 x low4 sec. It clearly shows 

Fig. 1. Surface rigid strip-foundation to transient forces. 

that the results obtained by the two methods are 
almost identical. Similar close agreement has been 
found for the horizontal and rocking motions as well 
(131. In the first formulation a time-step Ar = 16 x 
10e6sec is used. During one time-step, the P-wave 
travels a distance equal to half the length of an 
element. The second formulation allows a choice of 
the time step with duration /?At, where the factor /? 
can be any real number ranging from 1 to 2. 
However, solution accuracy is assured for /I = 2, 
which allows the second approach to determine the 
foundation response at time intervals twice as long as 
those of the first approach. 

Most of the computational effort can be attributed 
to the integrations of the kernels in eqns (9) and (13). 
In all cases the integrations with respect to time were 
done analytically, and the spatial integrations were 
performed by a six point Gaussian quadrature algor- 
ithm. The computations were performed on a Cyber 
CDC 74 and a CDC 855 for formulations I and II, 
respectively. In order to increase the accuracy of 
formulation I, as far as the dynamic effect of the 
propagating waves on the response is concerned, 
every element is further discretized into five sub- 
elements. Such subdivision is not required in formu- 
lation II. For formulation I improvement of the 
solution accuracy can be achieved only through a 
more refined discretization of the interface or element 
subdivision. In contrast, formulation II provides 
the alternative to improve the solution accuracy by 
utilizing higher-order time and spatial variations 

-8 

I X2 

Fig. 2. Spatial discretization of a surface strip-foundation. 
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Fig. 3. Vertical response to impulse loading. 

of the unknown quantities. An extension of the first 
approach to incorporate higher-order variations is 
possible but is not presented herein. 

In two-dimensional BEM formulations an addi- 
tional difficulty appears for r approaching zero and 
CJ (a = 1,2) being different from zero. It pertains to 
the singularities of the kernel functions in eqns (9) 
and (13). These singularities, however, are either 
apparent ones, which are eliminated when contri- 
butions of similar terms referring to dilatational and 
shear waves are evaluated together, or logarithmic 
that can be easily treated analytically(2]. The first 
BEM approach requires 150 CP set to determine 100 
time-steps of the foundation impulse vertical, hori- 
zontal and rocking motions. The evaluation of an 
equal number of time-steps by the second BEM 
approach required 69 CP sec. Provided that there is a 
CP ratio of 2 between the two machines, the CDC 
855 being faster than the CDC 74, the two methods 
appear to require almost equal computational effort 
to evaluate the foundation impulse response. In 
formulation I the assumption of constant time and 
spatial variation of the displacements and tractions as 
well as the simplicity of the expressions Sy) in Appen- 
dix I permit an analytical evaluation of the spatial 
integrations. This leads to a considerable reduction of 
the numerical computations [13] and, therefore, to a 
much smaller CP time. Similar evaluations, even 
though more cumbersome, are possible in formu- 
lation II. 

The harmonic, vertical, horizontal and rocking 

motions for the foundation subjected to the external 
forces 

P,(t) = P,, sin it, Pr(t) = Pm sin cut, 

M,(t) = MM sin or, 

where P,, = Pm = 180 k/ft (2626.92 kN/m), M,,, = 
180 k and o = 5814 rad are plotted in Fig. 4. For the 
evaluation of the first 32 x lo-’ see of the foundation 
response, formulation II requires 69 CPsec, while 
formulation I only 0.95 CP sec. This considerable 
difference is attributed to the algorithms used in the 
two methods. The tirst time domain BEM approach 
employs the foundation impulse response in conjunc- 
tion with the superposition principle to obtain the 
response of the foundation to any external load of a 
transient time variation. In contrast, the second 
method employs the same algorithm used for the 
evaluation of the foundation impulse response to 
determine the response due to transient loads. 

CONCLUSlONS 

On the basis of the preceding discussion of the time 
domain BEM formulations and their application on 
a representative soil-structure interaction problem, 
the following conclusions can be drawn: 

1. The general BEM approaches presented can be 
successfully employed to solve linear elastodynamic 
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Fig. 4. Harmonic forces response. 

problems under plane strain/plane stress conditions. 
The formulation I appears to be very efficient once 
the impulse system msponse is obtained. The formu- 
lation II permits the approximation of the unknown 
quantities with linear or higher-order interpolation 
functions. 
2. In both methods improvement of the solution 
accuracy can be achieved with more refined time or 
boundary discretixation. The tlrst approach requires 
element subdivision to yield accurate results. Since 

the space and time discretixations are interrelated, 
special consideration should be given to the appropri- 
ate time-step. 
3. The solution algorithms do not become evolved in 
later time-steps and are accurate for both short and 
long time intervals. 
4. The methods provide the time response directly, 
not in two steps as frequency domain approaches 
require. 
5. An advantage of time domain BEM over frequency 
domain approaches is that they are more suitable for 
extension to nonlinear material behavior. 
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-(I’ - At)J[(r’ - At)’ - (r/c,)2 - (r/c.)’ 

x In 
t’+J[P+(t/c,)2] 

I’ - At + ,/[(f’ - At)2 + (r/c.)*] * 
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=Znp 
r-*(fBV - r.,ri)(- 1) 
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The kernels S$) appearing in eqn (8) are given by 

I. For O<t-r/c.sAt, (a = 1,2) 

Sb’) = t’J[t’2 - (r/cJ2], 

Sh2) = 0.5 
C 

t’J[t’2 - (r/Q21 - (r/cJ2 

x ln t’ + Jb” - (r/d21 

rlc. 1 
S$‘) = In 

t’ + J[t” - (r/cJ2] 

r/c. ’ 
2. For At < t - r/c. 

St)= t’,/[~‘~ - (r/cJ2] - (t’ -At) 

x &t’ - At)2 - (rlcJ21, 

I’ + J/11’* + (r/c.$] 

“” = In t’ - At + ,/[(t' - At)2 + (r/cs)2] 
, 

Sh2) = 0.5 
i 
t’J(t’2 - (r/cJ2] 

x {(I. - t.,, + At)@. - 1, + At)* - (r/Q21 

- (1. - t,)J[(r, - Q2 - (r/c.J211 

+& ln (I, - t,,, + At) + JW. - t, + At)* - (r/d21 
2cf r, - t, + Jk - tA2 - (r/cJ21 > 

if (I, - 1,) > r/c, 

=& ry2($,-r.,r>)(-1) ( 
x {O. - t, + At)JKt, - L + 61)~ - (r/c,)211 

+’ ln 0. - L + At) + JW, - L + AtJ2 - (r/c.)‘1 6 

2cf r/c, > 

if (t,, - I,,,) < r/c. < t, - t, + At 

= 0 elsewhere. 


