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CLOSED FORM SERIES SOLUTIONS OF BOUNDARY 
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Abstract-A Fourier cum polynomial series solution scheme is presented herein which is applicable 
to a broad class of initial/boundary value problems in engineering mechanics. Special emphasis is given 
to those problems that are represented by linear partial or ordinary differential equations with variable 
coefficients and not amenable to exact analytic solutions. In the proposed approach. the coefticients 
of the polynomials are simultaneously solved as functions of the undetermined Fourier coefficients 
by satisfying the initial/boundary conditions. A Fourier series expansion of the variable coefficients 
and application of ortho_eonality conditions leads to the evaluation of the undetermined Fourier coef- 
ficients through the solution of simultaneous equations or summation equations. The summation equa- 
tions are solved in closed form by a new and highly efficient algorithm developed by the authors. 
Representative engineering mechanics problems are examplified to elucidate the features of the method 
and demonstrate its advantages over other techniques. 

INTRODUCTION 

Solutions of initial/boundary value problems gov- 
erned by linear differential operators with variable 
coefficients cannot, in general, be derived in closed 
form. Furthermore, integral transforms can be ap- 
plied selectively and the conventional techniques, 
if applicable, would lead to cumbersome solution 
algorithms[ I]. Numerical methods of analysis cir- 
cumvent the intractability of obtaining closed form 
solutions and lead to approximate solutions[2, 31. 
The best known classical numerical techniques are 
the method of weighted residuals and variational 
methods[4, 51. Application of a variational ap- 
proach requires the existence of an appropriate 
functional which may not be available for all classes 
of boundary value problems. However, an approx- 
imate solution can be obtained in a set of known 
functions with undetermined coefficients, once the 
functional is established. The undetermined coef- 
ficients are evaluated by satisfying some of the 
boundary conditions and minimizing the func- 
tional[6]. In the method of weighted residuals 
(MWR), one operates directly on the differential 
equation and the boundary conditions. Trial func- 
tions are chosen with arbitrary coefficients which 
are specified by minimizing the residual. An exten- 
sive review of the research pertinent to the MWR 
can be found in references by Crandall[4] and Fin- 
layson(71, while comparative studies between 
weighted residual methods have been presented by 
Fuller, Meneley, and Hetrick[B], Pomraning[9], and 
Shuleshko[ IO]. 

The well-known finite element, finite difference, 
or boundary element methods achieve similar ob- 
jectives by reducing the differential equation to a 
system of algebraic equations[I I-IS]. The finite 
element method allows consideration of domains 

composed of zones of different materials each with 
complex properties and irregular boundaries[ 161. 
Use of the finite difference method which appears 
to be as powerful as the finite element method, pre- 
sents some difficulties while modelling irregular 
boundaries. The emerging boundary element 
method is, in general, more efficient than the finite 
element and finite difference methods, especially 
for problems involving infinite domains. Neverthe- 
less, its use is limited to only problems where fun- 
damental solutions or Green’s functions are avail- 
able. All these methods require a refined 
discretization of either the whole domain or the ex- 
terior boundary, leading to a large system of equa- 
tions[l5. 161. 

Most of the present numerical schemes are 
either computationally cumbersome or restricted 
by their rate of convergence or complexity of 
boundary conditions. This is particularly true for 
those differential equations that have strong vari- 
ations in their coefficients. However, the proposed 
Fourier cum polynomial series solutions can be rou- 
tinely used in solving a wide range of initial bound- 
ary value problems. The method assumes a solution 
form which is a combination of Fourier series with 
undetermined coefficients and a set of polynomials 
with unknown constants. The assumed set of po- 
lynomials is complete and one order less than the 
order of the differential equation. The unknown 
constants are simultaneously solved as functions of 
the undetermined Fourier coefficients by satisfying 
the boundary conditions. Subsequently, the vari- 
able coefficients of the differential equation are ex- 
panded in terms of appropriate half-range Fourier 
series. These series of the assumed solution are in- 
serted into the governing differential equation and 
the orthogonality conditions are applied. The above 
mathematical operations lead to an infinite sum- 
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mation equation as a function of the undetermined 
Fourier coefficients. Such an equation can be 
solved for the undetermined coefficients either in 
open form by considering the first fe\c. terms of the 
summation equation or through a special algorithm. 
In this paper. the method is presented in a gener- 
alized form which indicates a technique for solving 
problems with inhomogeneous boundary condi- 
tions. Examples are presented to clarify some of 
the concepts developed herein. 

One of the distinct advantages of the proposed 
method over the existing weighted residual meth- 
ods or numerical techniques to solve differential 
equations with variable coefficients is the devel- 
opment of a fast converging algorithm that can be 
truncated to obtain a desired level of accuracy. 
uhile simultaneously satisfying arbitrary boundary 
conditions over a finite domain. This would prevent 
discretization within the finite domain with variable 
properties. Thus, the computational efficiency of a 
system composed of several finite domains can be 
significantly increased without any loss of gener- 
alities of a given system. 

BASIC METHOD 

Given a system of differential equations, bound- 
ary conditions and initial conditions, the general ap- 
proach is to assume a trial solution as a combination 
of Fourier series with undetermined coefficients 
and a complete set of polynomial series dependent 
on boundary conditions. The undetermined coef- 
ficients are found by requiring that the trial solution 
satisfies the differential equation, leading to an in- 
finite set of simultaneous equations with the un- 
determined coefficients as unknowns. Even though, 
the proposed method can be employed to solve in- 
itial boundary value problems with equal ease, the 
treatment of a steady-state one-dimensional prob- 
lem is presented herein to facilitate the understand- 
ing and highlight the most important features of the 
method. This is followed by the development of so- 
lutions of more complex two-dimensional prob- 
lems. 

Consider the following time independent equa- 

tion defined in a domain R: 

Lb%- = f, (I) 

where f. denotes a general linear differential op- 
erator involving spatial derivatives of an unknown 
function II*, and f pertains to a given function. On 
the boundary S of fI, 11’ will have to satisty certain 
boundary conditions. For eqn (I). assume a trial 
solution of the form 

where Q are undetermined coefficients, sin /&X/I 
are known linearly independent mode shapes or co- 
ordinate functions of X, c, are constants to be de- 

termined by satisfying the boundary conditions. II 
is the number of boundary conditions associated 
with the complete set of polynomials: and I is the 
length of a spatial domain. 

Satisfying eqn (1) with the boundary, conditions 
results in cj as functions of (IL and the inhomoge- 
neous boundary quantities. This leads to 

The mode shapes within the brackets of eqn (3) are 
a set of complete and linearly independent func- 
tions over the domain R and satisfy the boundary 
conditions. 

The variable coefficients of operator f. are ex- 
panded in half-range Fourier series. Substitution of 
the Fourier series expansion of variable coefficients 
and the assumed solution into eqn (I) as well as 
application of the orthogonality conditions leads to 
a summation equation in terms of the undetermined 
coefficients flh. 

c Bi.hm = I& with i = I. ( I I. ^L, (3) 
h=I 

where Bi,~ and & are known functions of the Four- 
ier expansions of variable coefficients, boundary 
conditions, and the function f of eqn ( I ). 

The degree of accuracy is dependent on the num- 
ber of terms that are summed in the infinite series 
expression (3). This is contrary to redefining the 
mode shapes or adding other shape functions and 
using refined discretization of the domain Q. as is 
done in the finite element method. 

Zienkiewicz[l6. 171 and others[7. 191 have 
pointed out that (I~ may be obtained by any 
weighted residual method that operates on an ap- 
proximation of the form given in eqn (3). Similarly. 
variational methods have been used to find no de- 
pending on the class of problems under investiga- 
tion[6]. However, it has been shown in Ref. [2Oj by 
the authors that a set of simultaneous equations of 
fast convergence can be obtained while solving a 
differential equation as defined in eqn ( I ). 

EXAMPLES 

To formalize some of the aforementioned 
thoughts, several practical examples with variable 
coefficients are presented in the following sections. 

Consider the problem of a beam of variable cross 
section with simple supports on the left end and 
fixed on the right (Refer to Fig. I). Under the as- 

Fig. I Tapered beam of rectangular section 



sumptions of small deformation theory and linear varying depth of I to 2 in.. span length of IO in.. 

elastic behavior, the flexural deflection is described modulus of elasticity of 30 x IO-’ ksi subjected to 
by the governing equation a uniform load of 0.1 k/ft is given in Table I. 

d’?, - 35 
drz - EI ’ (Sal 

y(0) = y”(O) = y(/) = f(l) = 0. (5b) 

in which f., is the varying moment of inertia with .r. 
The solution form of eqn (2) is rewritten in the 

following manner: 

W(x) = C crI sin kz.r/l + c,.$ 
!.=I 

+ (.$ + (‘3.1 + (‘,. (6) 

Invoking the boundary conditions of eqn (5b). 
eqn (6) can be written as 

W(x) = C crJsin kzrl/ 
!,=I 

- lW2 cos Hl(.r’/l’ - X/l)]. (7) 

Inserting eqn (7) into eqn (5a). expanding I, in 
half-range cosine series, and applying orthogonality 
conditions yields a summation equation similar to 
eqn (4) for uniform loading: 

;:[ 
P(C,_, + c,,, f Co6)y) + 4 x c, 

k= I m7F 

z 

cos mi7 2 
j" cos jr - 

4m’6jm + m’ - j2 > >I cj ok j=, 

4w:(l - cos m7r) = 
m3n5EI 

9 (8) 
a 

where 

.j 
x [(I + r-1’ cos i7F - I] - s (cos iii - I) 

and 

Co = $ [(I + 4’ - I] where I’ = dJd,, - I. 

Table I. Center deflection in inches of a beam with 
linearly varying depth 

No. of terms With simple With simple 
in series and fixed boundaries on 

boundaries both sides 

The above summation equation corresponding 
to simply supported-fixed boundary conditions is 
solved in open form. This is accomplished by con- 
sidering several terms of the series of eqn (8). A 
close inspection of eqns (7) and (8) reveals that the 
sinusoidal part of eqn (7) and the coefficient of I? 
of eqn (8) correspond to the solution of a simply 
supported beam of variable thickness and the re- 
maining terms express the effects of the fixed con- 
dition at the right support. 

Eqns (7) and (8) 
I 
2 
3 
4 
5 
6 

3.48 x IO-’ I.24 x lo- 
4.76 x IO-’ 1.403 x IO-’ 
4.46 x 10-j 1.399 x lo- 
4.51 x 10-j 1.400 x lo-’ 
4.49 x lo-’ 1.402 x lo-a 
4.51 x 10-s 1.402 x lo-a 

Exact 4.47 x lo-’ I.401 x lo-” 

Finite 4.46 x IO-’ 1.39 x lo-’ 
element 
method 

(STRUDL) 

The center deflection of a beam with linearly 
12 Elements 
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To demonstrate the applicability of the proposed 
method to time-dependent problems. the natural 
frequencies are determined for a simply supported 
tapered beam with depth varying from I.5 to 2.25 
in.. span length of 30 in.. modulus of elasticity of 
30 x IOh lb/in’. and mass density of 0.000 734 lb 
sec’iin.‘. The natural frequencies determined from 
the proposed method are compared with those ob- 
tained from the exact analysis as well as those from 
Ref. [20]. 

Natural frequencies (CPS) 

Series method Reference (20) Exact 

Mode I 197 189.12 188.45 
(First term 

approx.) 
192 

(Two term 
approx.) 

Mode 2 778 843.64 758.08 
(Two term 
approx.) 

As can be noted from the above tables. only the 
first two or three terms of the proposed series so- 
lutions are sufficient to obtain very accurate results. 

Another heuristic example that illustrates the 
proposed methodology herein is a time-indepen- 
dent two-dimensional diffusion equation with vari- 
able coefficients representing physical problems in 
heat conduction, soil mechanics, ground water 
flow, etc. 

The diffusion equation for a two-dimensional do- 
main with variable coefficients is of the form 

ah 
da z = 0 (9) 



Fig. 2. Flow through anisotropic media 

with boundary conditions 

11 = h, and h2 at.r = 0 and n, respectively, (IO) 

81 
-=Oaty=Oandb (RefertoFig.1). 
a? 

The solution form of eqn (9) is written in the 

following manner for the above problem: 

r r 

Ii(.r. v) = C x k;, sin is;.r/n t C,.r + C2 
,=I ( i= I > 

x cosjr;_vlb, (II) 

where the constants C, and Cz have to be obtained 

by satisfying the boundary conditions given in eqn 

(lOa). It should be noted that, in this particular case, 

the boundary conditions (lob) are satisfied auto- 

matically because the shape function in the _v di- 

rection is assumed to be of cosine series form. 

By satisfying eqn (IOa), C, and Cz are found to 

be 

h, - h, 
(-, = i and Cz = h, 

Ll 

Inserting eqn (1 I) into eqn (9) and applying or- 

thogonality with respect to cos jnylb yields 

x [hij sin iT.rln + (hz - hl).rla + h, ] + (r/a) 

x [~hi,(ida)cosida + (h, - hl)ln] = 0. (12) 

Equation (I?) is multiplied with cos ~TT.Y/U and in- 

tegrated from 0 to LI with respect to .V to yield the 

following summation equation: 

I - cos is; cos x.li 

k’ - iz + 6: (Jib)’ 

_ (I - r) cos in Cos Xn - I 

k’ _ i2 + di26f 0 

L‘ 2 jrL, 
(1 

2(112 - 
= 

it+ 
hi) ‘5 ’ (1 - cos k). (13) 

0 

Equation (13) is solved in closed form series for 

hi, through a new solution algorithm that is devel- 

oped by the authors and presented in the Appendix. 

It can be solved also in open form (Gaussian elim- 

ination. for example) by varying the dummy index 

i. which requires n” number of multiplication where 

“n” is the number of unknowns. However, the for- 

mer approach yields an efficient algorithm for sum- 

mation equations of the above nature because the 

number of multiplications involved are only of the 

order ?. 

This algorithm has salient advantages particu- 

larly for large order systems of linear equations. Val- 

ues of the unknowns It,, corresponding to higher 

magnitudes of indices can be obtained by evaluating 

the solution form of only a first few terms of the 

series solution. This is given in eqn (AZ). However. 

a classical solution algorithm of linear equations re- 

quires a larger number of simultaneous equations 

to be solved to determine the values corresponding 

to higher order indices. 

COSCLUSIONS 

Closed form Fourier series solutions for bound- 

ary value problems with variable coefficients and 

arbitrary boundaries are developed herein. More 

specifically, the steady state and free vibration be- 

havior of beams with variable properties are in- 

vestigated and a set of numerical results presented. 

The validity of the method and the accuracy of 

these results are demonstrated through compari- 

sons with the existing solutions. In addition. ap- 

plicability of the proposed method to two-dimen- 

sional problems with arbitrary boundaries and 

varying properties is illustrated by solving a poten- 

tial flow problem. 

The proposed method leads to a summation 

equation of fast convergence, which can be solved 

either in open-form or in closed-form series. The 

closed-form series solution is developed by the au- 

thors in the form of a new and efficient algo- 

rithm[Zl]. The main advantage of the methodology 

is the development of a closed-form solution 

through an algorithm. This requires a lesser com- 

putational effort and leads to greater accuracy when 

compared to conventional methods of inversion. 
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APPENDIX 

Solution algorithm of summation equations: 


