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a b s t r a c t

This study investigates the effect of soil–structure interaction (SSI) on the response of base-isolated

buildings. The equations of motion are formulated in the frequency domain, assuming frequency-

independent soil stiffness and damping constants. An equivalent fixed-base system is developed that

accounts for soil compliance and damping characteristics of the base-isolated building. Closed-form

expressions are derived, followed by a thorough parametric study involving the pertinent system

parameters. For preliminary design, the methodology can serve as a means to assess effective use of

base isolation on building structures accounting for SSI. This study concludes that the effects of SSI are

more pronounced on the modal properties of the system, especially for the case of squat and stiff base-

isolated structures.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Use of base isolation is increasingly applied to seismically
upgrade existing buildings as well as to effectively reduce the
seismic vulnerability of new buildings. It is also well recognized
that soil–structure interaction (SSI) could play a significant role on
structural response. However, common practice usually does not
account for the effects of SSI on the seismic behaviour of base-
isolated structures. The present study attempts to quantify the
effects of SSI on base-isolated building structures.

The effects of SSI on the seismic response of structures had not
been seriously taken into account until the 1971 San Fernando
earthquake and the beginning of nuclear plant construction in the
earthquake-prone California. The substantial number of journal
papers, e.g., Wong and Luco [1], and design guides, e.g., Idriss et al.
[2] published in the 1970s, reflect the great importance of the
phenomenon.

In the 1980s and 1990s, SSI was studied thoroughly thanks to
the impressive development of numerical methods, e.g., Spyrakos
and Beskos [3], Gazetas [4] and Wolf [5,6]. Also, many studies
investigated the effects of SSI on special structures, e.g., Goyal and
Chopra [7], Xu and Spyrakos [8], Maekawa et al. [9]. A detailed
discussion on SSI effects and analysis techniques is presented by
Johnson [10]. The inclusion of SSI phenomena in the seismic
analysis and design of structures is addressed in seismic code
provisions, including the recent FEMA 450 document [11]. Simple

criteria have been developed in order to decide whether SSI effects
must be taken into account and, if so, the degree that the building
eigenperiods and damping vary with specific dimensionless
system parameters, e.g., Spyrakos [12].

The modification of seismic structural response through
application of base isolation has been the subject of extensive
research for the last 25 years, mainly in the United States, Europe
and Japan [13–15]. Despite the fact that in most cases isolation
devices behave nonlinearly, it is common practice to use a linear
analysis for the seismic design of most base-isolated structures
[16]. The spread of base isolation has been assisted by the
development of appropriate design codes for isolated structures.
Commonly applied codes, such as the International Building Code
2000 [17] and Eurocode 8 [18], address most of the practical issues
regarding concepts and procedures related to base isolation.

Several studies have been made to assess the effect of SSI
phenomena on the seismic response of base-isolated bridges.
Chaudhary et al. [19] have identified the structural and geotech-
nical parameters of four base-isolated bridges using available
theoretical models and data from recent earthquakes. The main
conclusions of their study are that SSI effects depend primarily on
horizontal pier stiffness in relation to the soil horizontal stiffness,
and that the important reduction in the soil shear modulus
for moderate earthquakes should be definitely incorporated
into SSI analyses. Spyrakos and Vlassis [20] and Vlassis and
Spyrakos [21] performed analytical studies of SSI effects on the
longitudinal response of base-isolated bridge piers concerning the
increase in damping and the decrease in base shear, as calculated
by contemporary bridge design codes. They reached the conclu-
sion that SSI causes a significant decrease in the system

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/soildyn

Soil Dynamics and Earthquake Engineering

0267-7261/$ - see front matter & 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.soildyn.2008.07.002

� Corresponding author. Tel.: +30 2107721187; fax: +30 2107721182.

E-mail address: spyrakos@hol.gr (C.C. Spyrakos).

Soil Dynamics and Earthquake Engineering 29 (2009) 658–668



Author's personal copy

eigenfrequencies and a rather insignificant increase in the system
damping that is dominated by the isolation system damping
ratios.

Sarrazin et al. [22] presented the response of base-isolated
bridges for ambient vibration tests and earthquake excitations in
Chile. They reported differences between the Fourier amplitude
spectra of the numerical analyses that they performed and the
earthquake recordings, which may be attributed to SSI effects.
Iemura and Pradono [23] numerically evaluated the effectiveness
of passive isolators and semi-active dampers on an existing cable-
stayed bridge. Since the bridge towers were founded on a soft
35 m-thick soil layer, SSI was taken into account. It was found that
the flexibility introduced by the soil reduced the dampers
deformation and, in consequence, the amount of damping in the
retrofitted bridge. Tongaonkar and Jangid [24] presented the SSI
effects on a three-span bridge with LRBs, assuming frequency-
independent expressions for the soil stiffness and damping
parameters. Their numerical study revealed an increase in the
seismic displacements when SSI is included, a fact that should be
taken into account for the design of bridges.

Cho et al. [25] and Kim et al. [26] investigated the seismic
response of base-isolated liquid storage tanks, accounting for the
effects of fluid–structure–soil interaction. They performed a series
of numerical analyses using a coupled finite element—boundary
element formulation in the time domain. Their study revealed
that soil flexibility results in smaller displacement and force
amplitudes, but leaves the contained fluid motion unaffected.

According to the authors’ knowledge, very little has been
made on the investigation of SSI effects on base-isolated
buildings, such as the work by Constantinou and Kneifati [27]
and Tsai et al. [28]. Constantinou and Kneifati [27] have
investigated the effect of SSI on the dynamic characteristics of a
base-isolated structure. They have also examined the ability of a
simple energy-based method to yield results of satisfactory
accuracy. Furthermore, Tsai et al. [28] propose that the soil
compliance and damping should be taken into account for the
analysis of base-isolated buildings. Their findings are based on
numerical analyses of FPS-isolated buildings, and revealed that SSI
results in larger displacement and, in some sections in the
structure, larger shear forces.

This study presents a methodology to assess the effect of SSI on
base-isolated building structures, such as the one shown in Fig. 1.
A simplified model is developed in which the building, its
foundation, the base isolation and the soil are studied as a four-
degree-of-freedom (4-DOF) system. The methodology could serve
as a means to perform a preliminary analysis in order to evaluate
the effectiveness of base isolation in conjunction with SSI.

2. Analytical methodology

2.1. Equations of motion

The simplified model of the foundation–isolation-structure
system is shown in Fig. 2. With reference to Fig. 2, it can be
deduced that the relative with respect to the ground motion
displacements are expressed as

ut
s ¼ uo þ hjþ us (1a)

ut
b ¼ uo þ ub (1b)

In order to obtain the equations of motion of the system,
Lagrange’s equations are employed, that is

ddt
qK

q _qi

� �
�
qK

qqi

þ
qU

qqi

þ
qD

q _qi

¼ 0 (2)

with K, U and D denoting the kinetic, potential and dissipation
energy, respectively, qi(t) are the degrees-of-freedom of
the system and dot denotes differentiation with respect to time.
With appropriate manipulations, Eq. (2) yields the following
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Fig. 1. Base-isolated structure found on soil half-space.

Fig. 2. Analytical model for base-isolated structure including soil impedances.
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equations of motion in matrix form:

ms 0 ms msh

0 mb mb 0

ms mb ms þmb msh

msh 0 msh msh2

2
666664

3
777775

€us

€ub

€uo

€j

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

cs �cs 0 0

�cs cb þ cs 0 0

0 0 ch 0

0 0 0 cr

2
666664

3
777775

_us

_ub

_uo

_j

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

ks �ks 0 0

�ks kb þ ks 0 0

0 0 kh 0

0 0 0 kr

2
666664

3
777775

us

ub

uo

j

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ �

ms

mb

ms þmb

msh

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
€ug (3)

where ks, kb, kr and kh are the stiffness coefficients corresponding to
the structural, isolation and foundation rotational and horizontal
degree-of-freedom, respectively; cs, cb, cr and ch are the viscous
damping coefficients corresponding to the structural, isolation
and foundation rotational and horizontal degree-of-freedom,
respectively; ms and mb the mass coefficients corresponding to
the structural and isolation degree-of-freedom, respectively, and €ug

is the ground motion acceleration. The parameter h denotes the
equivalent structural height, defined as the height of an equivalent
single degree-of-freedom (SDOF) system. Usually, h is taken as
equal to the structural height for single-storey buildings, while for
multi-storey buildings it can be approximately set as equal to 0.7
times the total height of the building or be calculated with an
appropriate expression, e.g., Priestley [29].

The following parameters are introduced:

o2
h ¼

kh

mb þms
; o2

r ¼
kr

msh2
; o2

s ¼
ks

ms
; o2

b ¼
kb

mb þms
(4)

zs ¼
ocs

2ks
; zb ¼

ocb

2kb
; zh ¼

och

2kh
; zr ¼

ocr

2kr
(5)

By assuming a harmonic base excitation, ug ¼ eiot and perform-
ing several algebraic manipulations, Eq. (3) transforms to the
following set of equations:

�mso2ðus þ uo þ hjÞ þ ksð1þ 2zsiÞðus � ubÞ ¼ mso2ug (6a)

�mbo2ðub þ uoÞ þ kbð1þ 2zbiÞub � ksð1þ 2zsiÞðus � ubÞ

¼ mbo2ug (6b)

�mbo2ðub þ uoÞ �mso2ðus þ uo þ hjÞ þ khð1þ 2zhiþ 2zgiÞ

uo ¼ ðmb þmsÞo2ug (6c)

�msho2ðus þ uo þ hjÞ þ krð1þ 2zriþ 2zgiÞj ¼ msh2o2ug (6d)

Using Eqs. (4)–(5), Eqs. (6a)–(6d) can be expressed as

ðb1 � 1Þus � b1ub � uo � hj ¼ ug (7a)

� ½gb1�us þ �ð1� gÞ þ
o2

b

o2
b2 þ gb1

" #
ub � ð1� gÞ

uo ¼ ð1� gÞug (7b)

�gus � ð1� gÞub þ ð�1þ b3Þuo � guo ¼ ug (7c)

�us � ub þ ð�1þ b4Þhj ¼ ug (7d)

where the mass ratio g and the parameters b1, b2, b3 and b4 are
defined as

g ¼ ms

ms þmb
(8)

b1 ¼
o2

s

o2
ð1þ 2zsiÞ (9)

b2 ¼
o2

b

o2
ð1þ 2zbiÞ (10)

b3 ¼
o2

h

o2
ð1þ 2zhiþ 2zgiÞ (11)

b4 ¼
o2

r

o2
ð1þ 2zriþ 2zgiÞ (12)

Since the system consists of a massless foundation, only two
degree-of-freedom (2-DOF) can be considered as dynamic;
namely, the structural, us and the isolation, ub. As presented in
Part I of Appendix A, the equations of motion can be expressed
with reference to an equivalent 2-DOF system, that contains the
structural and the isolation degrees-of-freedom, that is

ð½ ~K� þ i½~z�Þ
us

ub

( )
¼

o2

~o2
s

ð1� gÞo
2

~o2
b

8>>>><
>>>>:

9>>>>=
>>>>;
~ug (13)

where the complex stiffness matrix of the equivalent 2-DOF
system is given by

ð½ ~K� þ i½~z�Þ

¼

1þ 2~zsi�
o2

~o2
s

�ð1þ 2~zsiÞ

�
~o2

s

~o2
b

gð1þ 2~zsiÞ 1þ 2~zbiþ
~o2

s

~o2
b

gð1þ 2~zsiÞ � ð1� gÞo
2

~o2
b

2
666664

3
777775 (14)

2.2. Modal properties

The eigenfrequencies of the equivalent 2-DOF system can be
calculated from Eqs. (13) and (14) by setting ~zb ¼

~zs ¼ 0, that is

1�
o2

~o2
s

�1

�
~o2

s

~o2
b

g 1þ
~o2

s

~o2
b

g� ð1� gÞo
2

~o2
b

2
666664

3
777775f
~F

m
g ¼ 0,

m ¼ 1;2 (15)

The eigenfrequencies of the equivalent 2-DOF system can be
expressed as

~o2
1;2 ¼

ð1þ ~RsgÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ~RsgÞ2 � 4ð1� gÞ ~Rsg

q
2ð1� gÞ

~o2
s (16)

where ~Rs ¼
~kb=

~ks is the equivalent system stiffness ratio.
The two modes can be determined from Eq. (15) and are

given by

f ~F
1
g ¼

1

1� ~a1

( )
, (17a)
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fF̄2
g ¼

1

1� ~a2

( )
, (17b)

in which

~a1 ¼
~o2

1

~o2
s

(18a)

~a2 ¼
~o2

2

~o2
s

(18b)

f ~F
1
g and f ~F

2
g are called the isolation and structural modes,

respectively. The effective modal mass ratios, that is the effective
modal mass over the total mass of the system, are given by

meff ;1

mb þms
¼

1

mb þms

ðf ~F
1
gT½ ~M�frgÞ2

f ~F
1
gT½ ~M�f ~F

1
g

¼
1

mb þms

1 1� ~a1
� � mb 0

0 ms

" #
1

1

( ) !2

1 1� ~a1
� � mb 0

0 ms

" #
1

1� ~a1

( )

¼
1

mb þms

½ð1� gÞ þ ð1� ~a1Þg�2

ð1� gÞ þ ð1� ~a1Þ
2g

mb þmsð Þ

¼
½ð1� gÞ þ ð1� ~a1Þg�2

ð1� gÞ þ ð1� ~a1Þ
2g

(19)

meff ;2

mb þms
¼

1

mb þms

ðf ~F
2
gT½ ~M�frgÞ2

f ~F
2
gT½ ~M�f ~F

2
g

¼
1

mb þms

½1 1� ~a2 �
mb 0

0 ms

" #
1

1

( ) !2

½1 1� ~a2 �
mb 0

0 ms

" #
1

1� ~a2

( )

¼
1

mb þms

½ð1� gÞ þ ð1� ~a2Þg�2

ð1� gÞ þ ð1� ~a2Þ
2g
ðmb þmsÞ

¼
½ð1� gÞ þ ð1� ~a2Þg�2

ð1� gÞ þ ð1� ~a2Þ
2g

(20)

The variation of the effective mass rations with respect to the
stiffness ratio ~Rs is depicted in Fig. 3. It can be deduced that
the effective mass ratio of the first mode is greater than 90% for
the range of ~Rs values examined. Thus, the contribution of the

second mode is negligible compared with that of the fundamental
mode. Therefore, it is justifiable to consider that the modal
viscous damping ratio of the first mode describes the behaviour of
the system adequately.

2.3. Damping ratios of equivalent system

The relations between the equivalent 2-DOF system para-
meters ~ob band ~os with the corresponding parameters of
the 4-DOF system, as elaborated in Part II of Appendix A,
can be obtained by imposing that the coefficients of us and ub

in the undamped formulation of the two systems are equal,
that is

~o2
b

o2
b

¼
o2

r

o2
b þo2

r

(21)

~o2
s

o2
s

¼
o2

r

o2
s þo2

r

(22)

The terms of the matrix ½~z� of the equivalent 2-DOF system can
also be obtained by applying the same procedure for damped
response as elaborated in Part II of Appendix A, to arrive at

½~z� ¼

~zs11 �~zs12

�~zs21

~Rs

~zb22 þ
1
~Rs

~zs22

2
664

3
775 (23)

where the terms of the matrix are explicitly given by

~zs11 ¼ zs 1�
o2

o2
r

� �
þ
o2

o2
r

zr þ
o2

o2
r

zg (24a)

~zs12 ¼ zs 1�
o2

o2
r

� �
þ
o2

o2
r

zr þ
o2Rsg
o2

r

zb þ
o2Rsg
o2

r

zh (24b)

~zs21 ¼ zs (24c)

~zb22 þ
1
~Rs

~zs22 ¼ 1� ð1� gÞo
2

o2
h

" #
zb þ ð1� gÞ

o2

o2
h

zh

þ ð1� gÞo
2

o2
h

zg þ
zs

~Rs

(24d)

in which Rs ¼ kb=ks is the stiffness ratio of the 4-DOF system.
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Fig. 3. Effective modal mass ratios for the first (isolation) and second (structural) mode of the equivalent 2-DOF system.
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2.4. Assessment of SSI on the base-isolated system

The following dimensionless parameters are introduced in
order to facilitate an investigation of the effects of SSI on base-
isolated buildings:

s̄ ¼
osh

vs
; h̄ ¼

h

a ; m̄ ¼
mb þms

ra3
(25)

where s̄ denotes a stiffness ratio expressing the relative stiffness
between the structure and the soil, vs is the soil shear wave
velocity, a is a characteristic length of the foundation, e.g., for a
circular foundation a is equal to its radius, and r is the soil mass
density. The parameter h̄ represents the geometrical form of the
structure, that is, large values of h̄ correspond to tall, slender
buildings, while small values correspond to short, squat buildings.
It is well established that the spring and dashpot coefficients of
the soil–structure interface degrees-of-freedom depend on the
frequency of the excitation [30]. In the present study, frequency-
independent coefficients are employed, using the following
expressions [12]:

kh ¼
8Ga
2� v

; ch ¼
4:6a2

2� v
rvs (26a)

kr ¼
8Ga3

3ð1� vÞ
; cr ¼

0:4a4

1� v
rvs (26b)

Substituting Eqs. (25), (26a) and (26b) in Eqs. (21) and (22)
yields:

~o2
b

o2
b

¼
8

8þ Rss̄2g2m̄3ð1� vÞ
(27)

~o2
s

o2
b

¼
8

8Rsgþ R2
s s̄2g3m̄3ð1� vÞ

(28)

According to the correspondence principle, the stiffness ratios
Rs and ~Rs are equal [20]. Based on Veletsos and Ventura [31], the
approximation that the transformation that diagonalizes the
stiffness matrix also diagonalizes the damping rations matrix, is
made:

½~z
�
� ¼ ½ ~F�T½~z�½ ~F� ¼

~z1 0

0 ~z2

" #
(29)

where

~z1 ¼
~zb11 � ð1� ~a1Þ

~zb12 þ
~zs21

~Rs

 !

þ ð1� ~a1Þ
2 ~zb22 þ

1
~Rs

~zs22

� �
(30)

~z2 ¼
~zb11 � ð1� ~a2Þ

~zb12 þ
~zs21

~Rs

 !

þ ð1� ~a2Þ
2 ~zb22 þ

1
~Rs

~zs22

� �
(31)

Figs. 4–12 depict the effects of SSI on the response of a base-
isolated building system. The structural (zs) and isolation (zb)
viscous damping ratios are assumed to be equal to 2% and 25%,
respectively. Also, the assumption that the structure exhibits
elastic behaviour because the deformations develop primarily at
the isolation level. The soil viscous damping ratio, zg, is assumed
to be equal to 5%, which implies small-to-moderate soil deforma-
tion levels. Figs. 4 and 5 present the variation of the ~o1=os ratio
with the dimensionless parameter s̄, for different values of m̄.
From Figs. 4 and 5 it can be observed that increasing m̄ results in
smaller values of ~os=os. The parameter m̄ is a measure of the
structural inertia; for a given foundation and assuming that the
soil mass density is practically the same for most applications,
larger values of m̄ imply greater structural mass, attributed to
either more stories in the structure or a larger mass in each storey.
Thus, the larger m̄, the greater is the anticipated inertial
interaction. The ~os=os ratio decreases significantly for increasing
s̄. As expected, as the shear wave velocity of the subsoil decreases,
the effects of SSI on the frequency characteristics of the system
become more pronounced.

Fig. 6 presents the variation of ~os=os with m̄. Notice that for s̄

equal to zero, the structural frequency is the same for the 4-DOF
and equivalent 2-DOF system. Such a behaviour is anticipated,
since for a rigid foundation, there is no influence of soil flexibility
on the system response. From Figs. 4–6 it can be deduced that the
effect of SSI on the frequency of the structure is greater for stiff
structures with flexible soil strata. Also, SSI becomes more
significant for small values of the parameter h̄, that implies larger
values of ~z1, and of the parameter m̄, that implies smaller values of
~os=os. Such a behaviour is also anticipated, since h̄ and m̄ are also
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Fig. 7. Variation of composite damping ratio ~z1 for representative h̄ (g ¼ 0.5, Rs ¼ 0.5, v ¼ 0.33, m̄ ¼ 3, zb ¼ 25%, zs ¼ 2%, zg ¼ 5%).
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measures of the relative structure–soil stiffness and inertia,
respectively.

The variation of the soil–base isolation-structure system
damping ratio, ~z1, with s̄ for representative values of the
parameters h̄ and m̄ is depicted in Figs. 7 and 8, respectively. It
is observed that for a given value of h̄ and m̄, ~z1 increases with for
decreasing structure–soil relative stiffness, expressed by an
increase of the parameter s̄. For h̄ greater than 1, the composite
damping ratio ~z1 is practically independent of s̄. Also, as the mass
ratio m̄ increases, that is, for increasing structural inertia
compared to the soil inertia, the effect of the relative stiffness of
the soil s̄ on affecting the composite damping ratio diminishes.
With the exception of relatively squat structures of small height
compared to the characteristic dimension of the foundation, i.e.,
h̄ ¼ 0:5 in Fig. 7, the influence of SSI on the equivalent damping
ratio is not significant. The equivalent damping ratio of slender
structures that display both translational and rocking deforma-
tions when excited, is not influenced by the relative soil stiffness,

expressed by the parameter s̄. From Fig. 8 it is observed that the
effect of the dimensionless mass ratio m̄ on the damping ratio of
the equivalent system ~z1 is negligible for relatively stiff subsoil
conditions, particularly for s̄ values lower than 2, and becomes
more significant for larger s̄ values. Consequently, provided that
the soil stiffness is relatively low, an increase in the structural
mass expressed by the parameter m̄ results in a decrease of the
energy absorption capability of the equivalent system expressed
by the composite damping ratio, ~z1.

The variation of ~z1 with Rs is presented in Fig. 9. This figure
exhibits the influence of the relative stiffness between the
structure and the isolation on the first modal damping ratio. An
increase in the isolation system stiffness, while the structural
stiffness is kept constant, results in a reduction of the composite
damping ratio, caused by an increase in the structural deforma-
tion in the first mode of the isolation-structure system. For the
limiting case of Rs ! 1 corresponding to a slender building
structure that has similar stiffness with the isolation system, the
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decrease in damping is approximately 50%. Figs. 10–12 demon-
strate the significance of the variation of the mass ratio g on the
composite damping ratio. The parameter g defined in Eq. (3)
expresses the relationship between the structural and isolation
mass. The limiting case of g ¼ 0.5 corresponds to a single story
base-isolated building with the isolator mass that is the half of the
total mass. Respectively, for the limiting case g-1.0 the isolator
mass should be considered as negligible compared with the
structural mass, a case corresponding to a multi-storey building.
Several values of the parameters s̄, m̄ and h̄ have been considered
and it appears that, independently from the relative mass and
stiffness properties between the structure and soil, the influence
of g on ~z1 is rather small, compared to the influence of the other
system parameters discussed previously, that is the mass ratio m̄,
the slenderness ratio h̄ and the relative stiffness between the
isolator and structure expressed by the parameter Rs. In Fig. 12 a
value of the parameter g ¼ 0.75 has also been considered, except
for the limiting cases discussed previously, denoting an inter-
mediate relation between ms and mb. In general, an increase in
g results in a decrease of the composite damping ratio.

Fig. 13 presents the variation of ~z1 with s̄, for different values of
the isolation system and soil half-space damping ratios, zb and zg,
respectively. The influence of the isolation damping ratio on the
composite damping ratio is larger than that of the soil damping
ratios for small s̄, since the response of the structure is primarily
affected by the isolation mode. The influence of the soil damping
ratio on the composite damping ratio is small, with the exception
of very large s̄. This behaviour may be attributed to the fact that
base isolation leads to a more flexible structure that is less
affected by SSI.

Based on the results of the parametric analysis, a preliminary
assessment of the efficiency of base isolation on building
structures can be made. Base isolation is more effective on light
structures found on loose soil conditions. Alternatively, the
characteristic length a should be selected greater than the
structural height in order to result in small values of the mass
and slenderness ratio. When multi-storey buildings are designed
the increase of the structural mass compared to the isolator
stiffness is not expected to be influential. An effort should be
made to increase the structural stiffness relatively to the bearings
stiffness, by either adding shear wall elements or using bearing
elements of low horizontal stiffness. On loose soil conditions, use
of natural rubber bearings of relatively small damping should be

selected, while for stiff subsoil conditions, base isolators providing
significant viscous damping such as lead rubber bearings should
be used in order to provide sufficient energy absorption capability
to the overall system. Regarding the combined effects of SSI and
base isolation on the frequency characteristics of the system, an
appropriate selection of the desirable increased period of the
system should be made, based on the particular site character-
istics. An increase of the structural period can be either
destructive or beneficial accordingly to several parameters, such
as the distance from a neighbouring fault, the type of the fault
mechanism and the magnitude of the earthquake. It should be
noted that a more elaborated analysis is necessary to provide
insight in the response of a real three-dimensional base-isolated
structure including SSI effects.

The results of the present investigation are limited to the range
of relatively small frequency excitations, i.e., when the character-
istic dimension of the footing is small compared with the
wavelength of the excitation. For high frequency excitations,
substantial changes on the modal characteristics of the system
should be expected. According to Stewart et al. [32] a significant
error can be introduced when neglecting the frequency depen-
dence of the real part of the impedance function for structures
with high modal frequency characteristics. In such a case a more
accurate investigation should also include several significant
factors affecting the overall response of the structure–founda-
tion–soil system, such as: foundation shape, foundation mass,
foundation flexibility or eccentricity effects, embedment and wave
propagation effects.

3. Conclusions

The present work investigates the importance of SSI on
the seismic response of base-isolated buildings founded on an
elastic soil half-space. An equivalent 2-DOF fixed-base system is
developed with frequency and damping parameters obtained
from a 4-DOF system base-isolated building structure. The
foundation stiffness and damping coefficients are assumed to be
frequency-independent; however, frequency-dependent soil char-
acteristics can be employed by simple modification of the derived
expressions.

The results of the analysis and an extensive parametric
study reveal the importance of SSI on the structure–base
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isolation–foundation system frequency characteristics. The study
demonstrates that the importance of SSI on the system damping is
relatively small, the latter being greatly influenced by the base
isolation system damping characteristics. It is also concluded that
SSI effects are significant for relatively stiff, squat structures with
small mass ratio m̄. For preliminary design of base-isolated
buildings, the methodology could serve as a means to assess the
effects of SSI.
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Appendix A

Part I—Derivation of equivalent 2-DOF system equations

The equations of motion of the equivalent fixed-base 2-DOF
system, shown in Fig. A1 and subjected to a harmonic base
excitation ~ugeiot , are:

�mso2us þ io~csðus � ubÞ þ
~ksðus � ubÞ ¼ mso2 ~ug (I.1)

�mbo2ub þ io~cbub � io~csðus � ubÞ þ
~kbub �

~ksðus � ubÞ

¼ mbo2 ~ug (I.2)

By setting

~zb ¼
o~cb

2~kb

; ~zs ¼
o~cs

2~ks

; ~o2
b ¼

~kb

mb þms
; ~o2

s ¼
~ks

ms
(I.3)

Eqs. (I.1) and (I.2) can be written as

1þ 2~zsi�
o2

~o2
s

" #
~us � ð1þ 2~zsiÞ ~ub ¼

o2

~o2
s

~ug (I.4)

�
~o2

s

~o2
b

gð1þ 2~zsiÞ

" #
~us þ 1þ 2~zbiþ

~o2
s

~o2
b

gð1þ 2~zsiÞ

"

�ð1� gÞo
2

~o2
b

#
¼ ð1� gÞo

2

~o2
b

~ug (I.5)

Eqs. (I.4) and (I.5) are equivalent to Eqs. (13) and (14).

Part II—Derivation of analytical expressions for equivalent 2-DOF

system frequency and damping terms

Multiplying Eq. (7a) with g and adding the resulting expression
to Eq. (7b), results in:

�gus þ �ð1� gÞ þ
o2

b

o2
ð1þ 2zbiÞ

" #
ub � uo � ghj ¼ ug (II.1)

Substituting Eq. (II.1) in Eqs. (7c) and (7d) and solving for uo,
yields

uo ¼
o2

b

o2
ð1þ 2zbiÞ

" #
ub

1

o2
h=o2ð1þ 2zhiþ 2zgiÞ

¼
o2

b

o2
h

1þ 2zbi

1þ 2zhiþ 2zgi
ub (II.2)

Equating the left-hand sides of Eqs. (7a) and (7d) leads to

hj ¼ o2
s

o2
r

1þ 2zsi

1þ 2zriþ 2zgi
us �

o2
s

o2
r

1þ 2zsi

1þ 2zriþ 2zgi
ub (II.3)

Substituting Eqs. (II.2) and (II.3) into Eqs. (7a) and (7b), and
performing a series of algebraic manipulations, yields

o2
s

o2
ð1þ 2zsiÞ �

o2
s

o2
r

1þ 2zsi

1þ 2zriþ 2zgi
� 1

� �
us þ �

o2
s

o2
ð1þ 2zsiÞ

�

þ
o2

s

o2
r

1þ 2zsi

1þ 2zriþ 2zgi
�
o2

b

o2
r

1þ 2zbi

1þ 2zhiþ 2zgi

#
ub ¼ ug (II.4)

�
o2

s

o2
gð1þ 2zsiÞ

� �
us þ �ð1� gÞ þ

o2
b

o2
ð1þ 2zbiÞ

"

�ð1� gÞ
o2

b

o2
h

1þ 2zbi

1þ 2zhiþ 2zgi
þ
o2

s

o2
gð1þ 2zsiÞ

#
ub

¼ ð1� gÞug (II.5)

Taking into account the fact that (1)/(1+ai)E1�ai, for a51;
neglecting the terms involving damping ratio products and
multiplying both terms with o2/os

2, Eq. (II.4) becomes

1þ 2zsi�
o2

o2
r

ð1þ 2zsi� 2zri� 2zgiÞ �
o2

o2
s

� �
us þ �ð1þ 2zsiÞ

�

þ
o2

o2
r

ð1þ 2zsi� 2zri� 2zgiÞ �
o2

bo
2

o2
ho2

s

ð1þ 2zbi� 2zhi� 2zgiÞ

#
ub

¼
o2

o2
s

ug (II.6)

Applying the same procedure for Eq. (II.5) and multiplying both
parts of the resulting expression with o2/ob

2, results in

�ð1� gÞo
2

o2
b

� ð1� gÞo
2

o2
h

ð1þ 2zbi� 2zhi� 2zgiÞ

"

þð1þ 2zbiÞ þ
o2

s

o2
b

gð1þ 2zsiÞ

#
ub �

o2
s

o2
b

gð1þ 2zsiÞ

" #
us

¼ ð1� gÞo
2

o2
b

ug (II.7)

Eqs. (II.6) and (II.7) can be considered equivalent to Eqs. (I.4)
and (I.5), respectively. The second parts of Eqs. (II.6) and (I.4) as
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well as the coefficients of us and ub are set equal, respectively:

1þ 2zsi�
o2

o2
r

ð1þ 2zsi� 2zri� 2zgiÞ �
o2

o2
s

� �

¼ 1þ 2~z11i�
o2

~o2
s

" #
(II.8)

�ð1þ 2zsiÞ þ
o2

o2
r

ð1þ 2zsi� 2zri� 2zgiÞ

�

�
o2

bo
2

o2
ho2

s

ð1þ 2zbi� 2zhi� 2zgiÞ

#
¼ �ð1þ 2~z12iÞ (II.9)

o2

o2
s

ug ¼
o2

~o2
s

~ug (II.10)

Equating the real and imaginary parts in Eqs. (II.9) and (II.10)
yields Eqs. (24a) and (24b) as well as the following expressions:

1

~o2
s

¼
1

o2
s

þ
1

o2
r

(II.11)

o2

o2
r

�
o2o2

b

o2
ho2

s

¼ 0 (II.12)

Applying the same procedure for Eqs. (II.7) and (I.5) results in
Eqs. (24c) and (24d) and the expressions

o2
s

o2
b

¼
~o2

s

~o2
b

(II.13)

1

~o2
b

¼
1

o2
b

þ
1

o2
h

(II.14)

Eqs. (II.11) and (II.14) yield Eqs. (21) and (22) respectively,
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