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Behavior of suspended roofs under blast loading
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Abstract

This work deals with the nonlinear dynamic behavior of initially imperfect dissipative multi-suspended roof systems under blast loading. For
various realistic combinations of geometrical, stiffness and damping parameters, the systems do not experience either snapping or large amplitude
chaotic motions, contrary to findings reported for single and double suspension roof systems. A nonlinear analysis is employed to establish
that global stability, being the main feature of multiple suspension roof systems, is captured by the proposed autonomous conservative models.
Applying Lagrange’s equations, the corresponding set of equations of motion for discrete models of multiple suspension roofs is obtained. Then,
numerical integration of the equations of motion is performed via the Runge–Kutta scheme. The dynamic behavior of suspended roofs under blast
loading is thoroughly examined for two cases of internal and external blast: source near the supports and source away from the supports. The
problem is formulated in a simple manner that can be easily employed for preliminary design of multi-suspended roofs subjected to blast loads.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Suspended roof systems are extensively used in many
structural applications, such as commercial halls, airport halls,
sport centers, trade and exhibition centers. Such structural
systems combine aesthetics and economy to satisfy special
architectural demands. Inspired engineers, such as L. Mies van
der Rohe, K. Tange, P. L. Nervi, and others, have designed and
built numerous great buildings with suspended roofs as their
main structural component [1–4]. The Crown Hall at the Illinois
Institute of Technology (1950–56), the Tokyo Small Olympics
Arena (early 1960s), Dulles International Airport (Washington
DC, 1962), the Stadthalle (Bremen 1964), the Europahalle
(Karlsruhe 1983), the PA Tech Laboratories (Princeton 1986),
the Church of Fatima (Brasilia 1988) and the Salt Lake City site
for the XIX Olympic Winter Games of 2002 are representative
examples of inspired applications of suspension roof systems.

In the last two decades, the development of powerful com-
puters and sophisticated nonlinear FEM software has enabled
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Fig. 1. Double suspension roof models.

engineers to utilize suspension roofs for complex large-scale
structures classified among unique examples of engineering
excellence. Suspended roof systems require three-dimensional
suspensions and transverse stiffening, being sensitive to hori-
zontal vibrations and may lose their stability caused by dynamic
snap-through buckling [5–8]. Nevertheless, double and mul-
tiple suspension roofs may overcome disadvantages of single
suspensions with repeated plane configurations, that can effec-
tively resist uplift and unbalanced as well as upward and down-
ward loading, as illustrated schematically in Fig. 1. A character-
istic example of the double suspension roofing technique is the
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Fig. 2. N -DOF system simulating a multiple suspension roof.
one applied for the Bangkok International Trade and Exhibition
Center (BITEC) [4].

Current state-of-practice for nonlinear static and dynamic
analysis of suspended structures, including suspension roof
systems, employs sophisticated FEM programs that simulate
the actual structures with multiple degree-of-freedom (DOF)
models [9,10]. Modeling of suspension roof systems with
finite elements for design purposes is a time consuming
procedure that requires special experience on stability matters.
However, simple models of suspension roof systems with a
few degrees-of-freedom can be used in order to capture the
most pronounced dynamic behavior aspects of real continuous
structures, provided that the simple models account for the
salient features of the structural system [5]. Earlier and recent
studies [11,12] have investigated the dynamic behavior and
stability of simple 2-DOF and 3-DOF initially imperfect
models with damping under step-loading that simulate single
and double suspension roofs [13,14]. Important findings have
been reported regarding sensitivity to horizontal vibrations,
and limit point with different types of point attractor
response as well as mathematical difficulties arising from the
duration of motion before the transient response is damped
out.

The present work deals with the nonlinear dynamic analysis
of a multi-DOF initially imperfect dissipative model under
internal and external blast loading, a type of loading for
which, according to the authors’ knowledge, there is increased
interest but very limited information in the literature [15–
17]. The formulation can consider inelastic behavior; however,
this work examines the response of linear elastic systems
accounting only for geometric nonlinearity. Based on energy
principles, it is found that the dominant degrees-of-freedom,
i.e., the vertical displacements, exhibit monotonically rising
equilibrium paths implying global stability, regardless of the
values of the parameters involved [13,14]. In this manner, this
major advantage of multiple suspension roofs is verified and
the corresponding dynamic response is proven to be stable. It
should be noted that some modern suspension roof systems
consist of thin shells suspended by cables [12,18]. Thus, the
behavior of this type of structure may be quite different from
the one predicted by the proposed model.
2. Model description and equations of motion

The majority of suspension roof structures consist of a
space truss system with hinges, a number of suspension bars
holding the system at the connection places, and are founded
on elastic supports. The N -DOF dissipative system shown in
Fig. 2 is used in this study as a simple, yet realistic, simulation
of multi-suspension roofs [14]. The model consists of N − 1
vertical linear springs with stiffness ki (i = 2, 3, . . . , N )
and corresponding dashpots ci (i = 2, 3, . . . , N ), while
the N − 1 concentrated masses mi (i = 2, 3, . . . , N ) are
interconnected via N − 2 weightless rigid inextensional bars
with length `i . The nodal supports 1 and N + 1 are immovable
hinges connected with the masses m2 and m N through inclined
springs with stiffness k1 and kN+1, and dashpots c1 and cN+1,
respectively. Since the suspension springs 2 to N are acting
mainly in the vertical direction and the system is anticipated to
experience reasonably small horizontal deflections compared to
its dimension, it can be assumed that the supports of the vertical
springs can freely slide along horizontal tracks as shown in
Fig. 2. The elastic supports are modeled with the springs k1
and kN+1 considered as extensional bars with initial length `1,0
and `N ,0, respectively, while in the deformed state their length
becomes `1 and `N , respectively. Thus, the initial configuration
of the system can be fully described by the bar lengths
`1,0, `2, . . . , `N−1 and `N ,0, and the corresponding angles of
direction θ1,0, θ2,0, . . . , θN−1,0 and θN ,0. Since nodes 1 and
N+1 are immovable hinges, the deformed configuration is fully
described by the bar length `1 and the angles θ1, θ2, . . . , θN−1.

The system is initially at rest in a configuration described as
follows:

xi,0 = `1,0 cos θ1,0 +

i∑
j=2

` j cos θ j,0

yi,0 = `1,0 sin θ1,0 +

i∑
j=2

` j sin θ j,0

 (1)

where xi,0 and yi,0 are the initial coordinates of joint i , and
` j and θ j,0 are the length and the initial direction of bar j ,
respectively.
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The deformed configuration of the system is described by

xi = `1 cos θ1 +

i∑
j=2

` j cos θ j

yi = `1 sin θ1 +

i∑
j=2

` j sin θ j

 (2)

where xi and yi are the coordinates of joint i , and θ j is the
direction of bar j in the deformed position. The strain energy
U of the system can be expressed as

U =
1
2

k1(`1 − `1,0)
2
+

1
2

N∑
i=2

ki

(
`1 sin θ1 +

i−1∑
j=2

` j sin θ j

− `1,0 sin θ1,0 −

i−1∑
j=2

` j sin θ j,0

)2

+
1
2

kN+1


(`1,0 cos θ1,0 +

N−1∑
j=2

` j cos θ j,0

+ `N ,0 cos θN ,0 −

N−1∑
j=1

` j cos θ j

)2

+

(
`1,0 sin θ1,0 +

N−1∑
j=2

` j sin θ j,0 + `N ,0 sin θN ,0

−

N−1∑
j=1

` j sin θ j

)2
 1

2

− `N ,0

 . (3)

Since the system is modeled with concentrated masses mi
and the rotational inertia of the rigid links is ignored, the load
potential Ω due to the blast loads Pi (t) is given by

Ω = −

N∑
i=2

Px,i (t)

[
`1 cos θ1 +

i−1∑
j=2

` j cos θ j − `1,0 cos θ1,0

−

i−1∑
j=2

` j cos θ j,0

]
−

N∑
i=2

Py,i (t)

[
`1 sin θ1

+

i−1∑
j=2

` j sin θ j − `1,0 sin θ1,0 −

i−1∑
j=2

` j sin θ j,0

]
. (4)

The kinetic energy K of the system is

K =
1
2

N∑
i=2

mi

( ˙̀1 cos θ1 − `1θ̇1 sin θ1 −

i−1∑
j=2

` j θ̇ j sin θ j

)2

+

(
˙̀1 sin θ1 + `1θ̇1 cos θ1 +

i−1∑
j=2

` j θ̇ j cos θ j

)2
 (5)

and the dissipation energy F is given by

F =
1
2

c1( ˙̀2
1 + `2

1θ̇
2
1 )
+
1
2

N∑
i=2

ci

(
˙̀1 sin θ1 +

i−1∑
j=1

` j θ̇ j cos θ j

)2

+
1
2

cN+1

( ˙̀1 cos θ1 −

N−1∑
j=1

` j θ̇ j sin θ j

)2

+

(
˙̀1 sin θ1 +

N−1∑
j=1

` j θ̇ j cos θ j

)2
 . (6)

The Lagrange equations of motion of the system are
expressed by

∂

∂ t

(
∂ K

∂ ˙̀1

)
−

∂ K

∂ `1
+

∂ F

∂ ˙̀1
+

∂ U

∂ `1
= −

∂ Ω
∂ `1

∂

∂ t

(
∂ K

∂ θ̇1

)
−

∂ K

∂ θ1
+

∂ F

∂ θ̇1
+

∂ U

∂ θ1
= −

∂ Ω
∂ θ1

· · ·

∂

∂ t

(
∂ K

∂ θ̇N−1

)
−

∂ K

∂ θN−1
+

∂ F

∂ θ̇N−1
+

∂ U

∂ θN−1
=−

∂ Ω
∂ θN−1


.

(7)

The system depicted in Fig. 2 is considered initially imperfect,
which implies that some joints have already undergone a small
initial deformation for which all springs are considered to be
unstressed. The blast forces Pi (t) (i = 2, . . . , N ) are applied
at the joints in the form of horizontal and vertical components,
i.e. Px,i (t) and Py,i (t).

According to previous research findings on internal blast
loading [16], a simplified analysis can be performed by
approximating the internal pressure–time loading function
assuming that the pulses have the triangular shape shown in
Fig. 3 for both incident (the largest triangle) and reflected
waves, in which time ta denotes the arrival time and Tr
the equivalent positive phase duration of the reflected wave.
According to Baker et al. [15], the peak pressure pr is halved
on each re-reflection, while after three reflections the pressure
of any reflected wave can be assumed to be practically zero.
The main parameters involved in the pressure function are: the
pressure pr , the arrival time ta and the positive phase duration
Tr . The internal pressure loading function P(t) for internal blast
with respect to time t can be expressed by [15]:

ta + Tr − t

Tr
pr ta < t < ta + Tr

3ta + Tr − t

2Tr
pr 3ta < t < 3ta + Tr

5ta + Tr − t

4Tr
pr 5ta < t < 5ta + Tr

0 elsewhere


. (8)

A typical pressure–time profile for an external blast wave is
shown in Fig. 4, in which the effect of underpressure is also
included. It consists of a straight line up to the raise time t1
followed by an exponential decay through the positive phase
(up to time t1 + t2) into the negative phase (t > t1 + t2),
finally becoming asymptotic to the time axis. The parameters
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Fig. 3. Internal blast loading function.

Fig. 4. External blast loading function.

involved in the pressure function are: the pressure pr , the raise
time t1, the positive phase duration t1+t2 and the underpressure
component 1pr related to the exponential factor a as expressed
in Eq. (9). For external blast the pressure loading function P(t)
is expressed as follows [16]:

pr
t

t1
0 < t < t1

pr

[
1 −

t − t1
t2 − t1

]
e−a(t−t1) t > t1

 . (9)

The following nondimensional quantities are introduced into
Eqs. (7):
λ =
P2

k1`1,0
, τ =

√
k1

m2
t, `N ,0 = `N ,0/`1,0

mi = mi/m2, pi = Pi/P2, `i = `i/`1,0 (i = 2, . . . , N )

ci = ci/
√

k1m2, ki = ki/k1, x i = xi/`1,0, yi = yi/`1,0

 (10)

where k1 and `1,0 are the stiffness and the initial length of the
left support spring, respectively, and m2 and P2 are the mass
and total magnitude of impact force at node 2, respectively.
After manipulation of the resulting expressions for each model
case (i.e. for various values of N ), the equations of motion can
be formulated and solved in a nondimensional form. Appendix
presents the nondimensional equations of motion for the 3-
DOF system without damping. Numerical difficulties caused by
strong nonlinearities associated with convergence failure have
been faced in the process of solving Eqs. (7). This problem has
been efficiently treated by decreasing the size of the relevant
integration step, with negligible effect on the accuracy of the
results, as elaborated in the following section.

3. Numerical results and discussion

The numerical examples presented herein refer to the
doubly and triply suspended roof models with the 3-DOF
and 4-DOF systems shown in Fig. 5. For a wide range of
representative geometrical configurations and combinations of
material properties, the dynamic response of each system is
obtained considering global stability for various internal and
external blast loads applied to shallow roof configurations.

3.1. Double suspension roof model

The corresponding 3-DOF model with `2 = 6, `3,0 =

1, m3 = 1 and θ1,0 = −θ3,0 = 45◦ is shown in Fig. 5(a). The
suspension stiffness (k2 = k3) has been varied with reference
to the lateral support stiffness (k1 = k4) and the following cases
have been studied: (i) strong suspension system (k2 = k3 = 1),
(ii) medium stiffness suspension system (k2 = k3 = 0.5), and
(iii) low stiffness suspension system (k2 = k3 = 0.1). In all
Fig. 5. 3-DOF and 4-DOF suspension roof models under blast loading.
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Fig. 6. Response of 3-DOF model with k2 = k3 = 1 under internal blast loading at the left support.
Table 1
Natural periods T of the 3-DOF model for various suspension stiffness

k2 = k3 = 1 k2 = k3 = 0.5 k2 = k3 = 0.1

T1 (s) 1.057 1.057 1.057
T2 (s) 0.680 0.809 0.989

cases, the suspension dashpots correspond to a damping ratio
ξ = 2%, while the lateral support dashpots correspond to ξ =

5%. Thus, in view of Eqs. (10) the values of the nondimensional
dashpot coefficients are c1 = c4 = 0.070 and c2 = c3 = 0.028.

Table 1 lists the first two eigenperiods of the double sus-
pension roof model that correspond to a horizontal and a
translational mode, respectively. The fundamental period T1
associated with the horizontal mode is not affected by the vari-
ation of the suspension stiffness, contrary to the second eigen-
period T2 that is directly affected and dominates the vertical
motion. It should be noted, at this point, that the eigenperiods
listed in Table 1 (as well as in Table 2 for the triple suspension
system) have been evaluated at the initial configuration of the
system using a standard mode-extraction procedure for linear
systems; see e.g. Graig [19]. They have been used in order to
get a feel for the effect of the suspension stiffness variation on
the system response. The solution of the problem is based on a
nonlinear formulation and solution algorithm only.

The system is given a small initial deformation with θ∗

2,0 =

0.5◦. Both the internal and external blast loads pr are taken
as 25% of the total weight of the system (λ = 0.0235). For
internal blast, the arrival time is taken ta = 1.0 s and the
positive phase duration is Tr = 0.5 s, while for external blast,
the raise time is t1 = 0.50 s, the positive phase duration is
t1 + t2 = 1.5 s and the exponential factor is a = 1. The loading
parameters are chosen taking into account the relative criteria
presented by Craig [19]. With such a selection of λ, the impact
loads are just below the maximum load level that leads to excess
deformation of the suspension associated with material failure
of the springs.
Regarding the internal blast source position, two cases have
been considered; see Fig. 5(a): (a) the blast source is located
directly under node 2, and (b) the source is at equal distances
from nodes 1 and 4. For external blast the source position is
taken outside the system at node 1.

The system of the three nonlinear equations of motion,
Eqs. (7), is thereafter treated numerically as a system of six first
order ODEs via the Runge–Kutta scheme yielding a minimal
error O(h4), with h being the integration step [20]. It has been
found that for a step size h < 0.005, the numerical integration
procedure is stable for all cases. In order to visualize the long-
term dynamic behavior, associated with a stable point attractor
response, the output data have been retrieved via Mathematica
software [21], producing the representative time-series shown
in Figs. 6–8 for an internal blast load near the left support.
Figs. 9–11 present similar plots for internal blast at equal
distances from the supports. The coordinates xi and yi (i =

2, 3) denote the horizontal and vertical response of node i ,
respectively, of the models subjected to blast loads. In Fig. 12,
the plane portraits for node 2 are presented for the strong
suspension models for internal and external blast, respectively.
From these figures it can be observed that: (a) as the suspension
stiffness increases the response amplitude attenuates at a slower
rate, and (b) as the suspension stiffness decreases the system
experiences larger amplitudes in the vertical direction. More
specifically, an increase of 50%–90% of the amplitude in the
horizontal direction and 200%–300% in the vertical direction
is observed. Comparing internal to external blast effects, it is
observed that external blast affects both the horizontal and the
vertical response of the system. Specifically, the amplitude of
the horizontal component increases by 50% and the amplitude
of the vertical component decreases by 70%.

3.2. Triple suspension roof model

As a second case, the 4-DOF model shown in Fig. 5(b)
is studied. For this model similar mass, length and stiff-
ness properties with the 3-DOF system are selected, so that
Table 2
Natural periods T of the 4-DOF model for various suspension stiffness

k2 = 2k3 = k4 = 1 k2 = 2k3 = k4 = 0.5 k2 = 2k3 = k4 = 0.1

T1 (s) 1.967 (v) 1.669 (v) 1.323 (v)
T2 (s) 1.528 (c) 1.179 (c) 1.125 (h)
T3 (s) 0.926 (h) 0.914 (h) 0.710 (c)

Note: (h) horizontal mode, (v) vertical mode, (c) coupled vertical and rotational mode.
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Fig. 7. Response of 3-DOF model with k2 = k3 = 0.1 under internal blast loading at the left support.

Fig. 8. Response of 3-DOF model with k2 = k3 = 1 under internal blast loading at equal distances from the supports.

Fig. 9. Response of 3-DOF model with k2 = k3 = 0.1 under internal blast loading at equal distances from the supports.

Fig. 10. Response of 3-DOF model with k2 = k3 = 1 under external blast loading at the left support.
`2 = `3 = 3, `4,0 = 1, 2m3 = m4 = 0.5, θ2,0 = −θ3,0 = 30◦

and θ1,0 = −θ4,0 = 45◦, in order to examine trends of the re-
sponse when the suspensions of the system are increased. The
suspension stiffness (k2 = 2k3 = k4) has been varied with
reference to the lateral support stiffness (k1 = k5). The follow-
ing cases are considered: (i) strong suspension systems (k2 =
2k3 = k4 = 1), (ii) medium stiffness suspension system (k2 =

2k3 = k4 = 0.5), and (iii) low stiffness suspension system
(k2 = 2k3 = k4 = 0.1). The suspension damping coefficients
correspond to a damping ratio ξ = 2%, while the lateral ones
correspond to ξ = 5%. As in the 3-DOF model, the 4-DOF sys-
tem is also given a small initial deformation with θ∗

2,0 = 0.5◦.
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Fig. 11. Response of 3-DOF model with k2 = k3 = 0.1 under external blast loading at the left support.

Fig. 12. Plane portraits for node 2 of 3-DOF model with k2 = k3 = 1 under (a) internal and (b) external blast loading at the left support.

Fig. 13. Response of 4-DOF model with k2 = 2k3 = k4 = 1 under internal blast loading at the left support.
Table 2 presents the first three eigenperiods of the
triple suspension roof model that correspond to horizontal
translational, vertical and coupled modes, respectively. It is
observed that the eigenperiod associated with the horizontal
mode is slightly affected by the variation of the suspension
stiffness, contrary to the other two eigenperiods that are directly
affected and dominate the vertical motion. A comparison
between Tables 1 and 2 shows that: (a) the triple suspension
system has higher eigenperiods than the corresponding
double suspension system, and (b) the suspension stiffness
significantly affects the corresponding vertical and coupled
rotational modes, which implies that the vertical stiffness is the
primary parameter that controls the system response.

The system of four differential equations of motion Eqs. (7)
is derived and then solved numerically via the Runge–Kutta
scheme, and the time-series and plane portraits for three
representative cases of triply suspended roofs are presented
in Figs. 13–19. More specifically, the response for nodes 2
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Fig. 14. Response of 4-DOF model with k2 = 2k3 = k4 = 0.1 under internal blast loading at the left support.

Fig. 15. Response of 4-DOF model with k2 = 2k3 = k4 = 1 under internal blast loading at equal distances from the supports.
and 3 are shown in Figs. 13 and 14 for an internal blast load
directly under node 2 for various values of the suspension
stiffness. Figs. 15 and 16 present the response for a blast load
at equal distances from nodes 1 and 5, while Figs. 17 and 18
depict the response of the system caused by an external blast
at node 1. In Fig. 19 the plane portraits for nodes 2 and 3
are presented for the strong suspension models for internal and
external blast, respectively. From these figures one can arrive
at the same general conclusions as for the double suspension
model regarding the amplitude and duration of motion. More
specifically, it is observed that as the stiffness decreases, the
amplitude in the horizontal direction increases by 100%–300%
and in the vertical direction by almost 200%. Comparing
internal to external blast effects, it is observed that external blast
affects mainly the horizontal response of the roof (amplitude
increases by 70%) and has less effect on the vertical component
producing smaller amplitudes (30% decrease).

Comparing the dynamic response between the double
and triple suspension systems, it becomes clear that: (a)
the triple suspension system experiences larger amplitudes
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Fig. 16. Response of 4-DOF model with k2 = 2k3 = k4 = 0.1 under internal blast loading at equal distances from the supports.

Fig. 17. Response of 4-DOF model with k2 = 2k3 = k4 = 1 under external blast loading at the left support.
in the vertical direction than the double suspension system
by almost 80%–100%, (b) the external blast affects mainly
the horizontal movement of the roof, and (c) the coupled
vertical–rotational component, see Fig. 19, is also excited
producing larger amplitudes in the vertical direction by almost
100%. The influence of geometric nonlinearity on the response
of the system is illustrated through Figs. 12 and 19, where
the plane-portraits of nodal displacements are shown. The
highly nonlinear response of the system is due to geometric
nonlinearities only, since the material is assumed linearly
elastic.
4. Conclusions

A general simplified multi-DOF model to study the dynamic
response of multi-suspended roof systems under internal and
external blast loads is presented. The results for the 3-DOF
and 4-DOF systems are qualitatively in total agreement with
the ones reported in previous studies on double and multiple
suspension roofs subjected to suddenly applied loads acting in
the vertical direction only [13,14].

The most important conclusions in this study can be
summarized as follows:
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Fig. 19. Plan
Fig. 18. Response of 4-DOF model with k2 = 2k3 = k4 = 0.1 under external blast loading at the left support.

e portraits for nodes 2 and 3 of 4-DOF model with k2 = 2k3 = k4 = 1 under (a), (b) internal and (c), (d) external blast loading at the left support.
– For all model cases dealt with, the global dynamic response
of the system is observed to be stable, a primary advantage
of multi-suspension roofs that is successfully captured by the
proposed methodology.

– This analysis demonstrates that the stiffness of the
suspension system dominates the dynamic response of
the roofing system, while the effect of the stiff-
ness of the lateral supports is proven to be less
important.

– As the suspension stiffness increases the response amplitude
attenuates at a slower rate for both double and triple
suspension systems, while in contrast, as the suspension
stiffness decreases the system experiences larger amplitudes
in the vertical direction.

– Comparing the effects due to internal and external blast, it is
observed that external blast influences mainly the horizontal
response of the roof and has secondary effects on the vertical
component, producing smaller amplitudes for double and
triple suspension systems.

– In triple suspension systems, a coupled vertical–rotational
mode is also excited, producing a motion with greater
amplitude in the vertical direction.
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– The dynamic response of stiff-suspension systems under
blast loads is associated with amplitudes attenuating at
a slower rate. This effect is more pronounced in double
suspension systems compared to triple or more suspension
systems.

It is finally concluded that the proposed multi-DOF model
can serve as a tool to study the dynamic behavior of multiple
suspension roofs and offers a first insight on the advantages
of this popular roofing system. In addition, it can be readily
employed for preliminary studies of the dynamic response and
global stability of multi-suspended roof systems under blast
loads.

Appendix

The three equations of motion for the 3-DOF system without
damping are:

−1 − px2 cos[θ1[t]] − px3 cos[θ1[t]] + l1[t]

− py2 sin[θ1[t]] − py3 sin[θ1[t]]

+ k2 sin[θ1[t]](−sin[θ10] + l1[t] sin[θ1[t]])

+ k3 sin[θ1[t]](−sin[θ10] − l2 sin[θ20]

+ l1[t] sin[θ1[t]] + l2 sin[θ2[t]])

+ (k4(−2 cos[θ1[t]](cos[θ10] + l2 cos[θ20]

+ l30 cos[θ30] − l2 cos[θ2[t]] − cos[θ1[t]]l1[t])

− 2 sin[θ1[t]](sin[θ10] + l2 sin[θ20]

+ l30 sin[θ30] − l1[t] sin[θ1[t]]

− l2 sin[θ2[t]]))(−l30 +
√

((cos[θ10] + l2 cos[θ20]

+ l30 cos[θ30] − l2 cos[θ2[t]] − cos[θ1[t]]l1[t])2

+ (sin[θ10] + l2 sin[θ20] + l30 sin[θ30]

− l1[t] sin[θ1[t]]

− l2 sin[θ2[t]])2)))/(2
√

((cos[θ10] + l2 cos[θ20]

+ l30 cos[θ30] − l2 cos[θ2[t]] − cos[θ1[t]]l1[t])2

+ (sin[θ10] + l2 sin[θ20] + l30 sin[θ30]

− l1[t] sin[θ1[t]] − l2 sin[θ2[t]])2))

+
1
2
(2 sin[θ1[t]]θ1′

[t](−l1[t] sin[θ1[t]]θ1′
[t]

+ cos[θ1[t]]l1′
[t])

− 2 cos[θ1[t]]θ1′
[t](cos[θ1[t]]l1[t]θ1′

[t]

+ sin[θ1[t]]l1′
[t]))

−
1
2

m3(−2 sin[θ1[t]]θ1′
[t](−l1[t] sin[θ1[t]]θ1′

[t]

− l2 sin[θ2[t]]θ2′
[t] + cos[θ1[t]]l1′

[t])

+ 2 cos[θ1[t]]θ1′
[t](cos[θ1[t]]l1[t]θ1′

[t]

+ l2 cos[θ2[t]]θ2′
[t] + sin[θ1[t]]l1′

[t]))

+
1
2
(−2 sin[θ1[t]]θ1′

[t](−l1[t] sin[θ1[t]]θ1′
[t]

+ cos[θ1[t]]l1′
[t])

+ 2 cos[θ1[t]]θ1′
[t](cos[θ1[t]]l1[t]θ1′

[t]

+ sin[θ1[t]]l1′
[t])

+ 2 cos[θ1[t]](−cos[θ1[t]]l1[t]θ1′
[t]2
− 2 sin[θ1[t]]θ1′
[t]l1[t] − l1′

[t] sin[θ1[t]]θ1′′
[t]

+ cos[θ1[t]]l1′′
[t])

+ 2 sin[θ1[t]](−l1[t] sin[θ1[t]]θ1′
[t]2

+ 2 cos[θ1[t]]θ1′
[t]l1′

[t] + cos[θ1[t]]l1[t]θ1′′
[t]

+ sin[θ1[t]]l1′′
[t]))

+
1
2

m3(−2 sin[θ1[t]]θ1′
[t](−l1[t] sin[θ1[t]]θ1′

[t]

− l2 sin[θ2[t]]θ2′
[t] + cos[θ1[t]]l1′

[t])

+ 2 cos[θ1[t]]θ1′
[t](cos[θ1[t]]l1[t]θ1′

[t]

+ l2 cos[θ2[t]]θ2′
[t] + sin[θ1[t]]l1′

[t])

+ 2 cos[θ1[t]](−cos[θ1[t]]l1[t]θ1′
[t]2

− l2 cos[θ2[t]]θ2′
[t]2

− 2 sin[θ1[t]]θ1′
[t]l1′

[t]

− l1[t] sin[θ1[t]]θ1′′
[t] − l2 sin[θ2[t]]θ2′′

[t]

+ cos[θ1[t]]l1′′
[t])

+ 2 sin[θ1[t]](−l1[t] sin[θ1[t]]θ1′
[t]2

− l2 sin[θ2[t]]θ2′
[t]2

+ 2 cos[θ1[t]]θ1′
[t]l1′

[t] + cos[θ1[t]]l1[t]θ1′′
[t]

+ l2 cos[θ2[t]]θ2′′
[t]

+ sin[θ1[t]]l1′′
[t])). (A.1)

−py2 cos[θ1[t]]l1[t] − py3 cos[θ1[t]]l1[t]

+ px2l1[t] sin[θ1[t]] + px3l1[t] sin[θ1[t]]

+ k2 cos[θ1[t]]l1[t](−sin[θ10] + l1[t] sin[θ1[t]])

+ k3 cos[θ1[t]]l1[t](−sin[θ10] − l2 sin[θ20]

+ l1[t] sin[θ1[t]] + l2 sin[θ2[t]])

+ (k4(2l1[t](cos[θ10] + l2 cos[θ20]

+ l30 cos[θ30] − l2 cos[θ2[t]]

− cos[θ1[t]]l1[t]) sin[θ1[t]]

− 2 cos[θ1[t]]l1[t](sin[θ10] + l2 sin[θ20]

+ l30 sin[θ30] − l1[t] sin[θ1[t]]

− l2 sin[θ2[t]]))(−l30 +
√

((cos[θ10]

+ l2 cos[θ20] + l30 cos[θ30]

− l2 cos[θ2[t]] − cos[θ1[t]]l1[t])2

+ (sin[θ10] + l2 sin[θ20]

+ l30 sin[θ30] − l1[t] sin[θ1[t]]

− l2 sin[θ2[t]]2))))/(2
√

((cos[θ10]

+ l2 cos[θ20] + l30 cos[θ30]

− l2 cos[θ2[t]] − cos[θ1[t]]l1[t])2

+ (sin[θ10] + l2 sin[θ20] + l30 sin[θ30]

− l1[t] sin[θ1[t]] − l2 sin[θ2[t]])2))

+
1
2
(−2(−l1[t] sin[θ1[t]]θ1′

[t]

+ cos[θ1[t]]l1′
[t])(−cos[θ1[t]]l1[t])θ1′

[t]

− sin[θ1[t]]l1′
[t]) − 2(−l1[t] sin[θ1[t]]θ1′

[t]

+ cos[θ1[t]]l1′
[t])(cos[θ1[t]]l1[t]θ1′

[t]

+ sin[θ1[t]]l1′
[t])

−
1
2

m3(2(−l1[t] sin[θ1[t]]θ1′
[t] − l2 sin[θ2[t]]θ2′

[t]
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+ cos[θ1[t]]l1′
[t])(−cos[θ1[t]]l1[t]θ1′

[t]

− sin[θ1[t]]l1′
[t]) + 2(−l1[t] sin[θ1[t]]θ1′

[t]

+ cos[θ1[t]]l1′
[t])(cos[θ1[t]]l1[t]θ1′

[t]

+ l2 cos[θ2[t]]θ2′
[t] + sin[θ1[t]]l1′

[t]))

+
1
2
(−2 cos[θ1[t]]l1[t]θ1′

[t](−l1[t] sin[θ1[t]]θ1′
[t]

+ cos[θ1[t]]l1′
[t])

− 2 sin[θ1[t]]l1′
[t](−l1[t] sin[θ1[t]]θ1′

[t]

+ cos[θ1[t]]l1′
[t])

− 2l1[t] sin[θ1[t]]θ1′
[t](cos[θ1[t]]l1[t]θ1′

[t]

+ sin[θ1[t]]l1′
[t])

+ 2 cos[θ1[t]]l1′
[t](cos[θ1[t]]l1[t]θ1′

[t]

+ sin[θ1[t]]l1′
[t])

− 2l1[t] sin[θ1[t]](−cos[θ1[t]]l1[t]θ1′
[t]2

− 2 sin[θ1[t]]θ1′
[t]l1′

[t]

− l1[t] sin[θ1[t]]θ1′′
[t] + cos[θ1[t]]l1′′

[t])

+ 2 cos[θ1[t]]l1[t](−l1[t] sin[θ1[t]]θ1′
[t]2

+ 2 cos[θ1[t]]θ1′
[t]l1′

[t] + cos[θ1[t]]l1[t]θ1′′
[t]

+ sin[θ1[t]]l1′′
[t]))

+
1
2

m3(−2 cos[θ1[t]]l1[t]θ1′
[t](−l1[t] sin[θ1[t]]θ1′

[t]

− l2 sin[θ2[t]]θ2′
[t] + cos[θ1[t]]l1′

[t])

− 2 sin[θ1[t]]l1′
[t](−l1[t] sin[θ1[t]]θ1′

[t]

− l2 sin[θ2[t]]θ2′
[t] + cos[θ1[t]]l1′

[t])

− 2l1[t] sin[θ1[t]]θ1′
[t](cos[θ1[t]]l1[t]θ1′

[t]

+ l2 cos[θ2[t]]θ2′
[t] + sin[θ1[t]]l1′

[t])

+ 2 cos[θ1[t]]l1′
[t](cos[θ1[t]]l1[t]θ1′

[t]

+ l2 cos[θ2[t]]θ2′
[t] + sin[θ1[t]]l1′

[t])

− 2l1[t] sin[θ1[t]](−cos[θ1[t]]l1[t]θ1′
[t]2

− l2 cos[θ2[t]]θ2′
[t]2

− 2 sin[θ1[t]]θ1′
[t]l1′

[t]

− l1[t] sin[θ1[t]]θ1′′
[t]

− l2 sin[θ2[t]]θ2′′
[t] + cos[θ1[t]]l1′′

[t])

+ 2 cos[θ1[t]]l1[t](−l1[t] sin[θ1[t]]θ1′
[t]2

− l2 sin[θ2[t]]θ2′
[t]2

+ 2 cos[θ1[t]]θ1′
[t]l1′

[t]

+ cos[θ1[t]]l1[t]θ1′′
[t]

+ l2 cos[θ2[t]]θ2′′
[t] + sin[θ1[t]]l1′′

[t])) (A.2)

−l2py3 cos[θ2[t]] + l2px3 sin[θ2[t]]

+ k3l2 cos[θ2[t]](−sin[θ10] − l2 sin[θ20]

+ l1[t] sin[θ1[t]] + l2 sin[θ2[t]])

+ (k4(2l2(cos[θ10] + l2 cos[θ20]

+ l30 cos[θ30] − l2 cos[θ2[t]]

− cos[θ1[t]]l1[t]) sin[θ2[t]]

− 2l2 cos[θ2[t]](sin[θ10] + l2 sin[θ20]

+ l30 sin[θ30] − l1[t] sin[θ1[t]]

− l2 sin[θ2[t]]))(−l30 +
√

((cos[θ10] + l2 cos[θ20]

+ l30 cos[θ30] − l2 cos[θ2[t]] − cos[θ1[t]]l1[t])2

+ (sin[θ10] + l2 sin[θ20] + l30 sin[θ30]
− l1[t] sin[θ1[t]] − l2 sin[θ2[t]])2)))/(2
√

((cos[θ10]

+ l2 cos[θ20] + l30 cos[θ30] − l2 cos[θ2[t]]

− cos[θ1[t]]l1[t])2
+ (sin[θ10] + l2 sin[θ20]

+ l30 sin[θ30] − l1[t] sin[θ1[t]] − l2 sin[θ2[t]])2))

−
1
2

m3(−2l2 cos[θ2[t]]θ2′
[t](−l1[t] sin[θ1[t]]θ1′

[t]

− l2 sin[θ2[t]]θ2′
[t] + cos[θ1[t]]l1′

[t])

− 2l2 sin[θ2[t]]θ2′
[t](cos[θ1[t]]l1[t]θ1′

[t]

− l2 cos[θ2[t]]θ2′
[t] + sin[θ1[t]]l1′

[t]))

+
1
2

m3(−2l2 cos[θ2[t]]θ2′
[t](−l1[t] sin[θ1[t]]θ1′

[t]

− l2 sin[θ2[t]]θ2′
[t] + cos[θ1[t]]l1′

[t])

− 2l2 sin[θ2[t]]θ2′
[t](cos[θ1[t]]l1[t]θ1′

[t]

+ l2 cos[θ2[t]]θ2′
[t] + sin[θ1[t]]l1′

[t])

− 2l2 sin[θ2[t]](−cos[θ1[t]]l1[t]θ1′
[t]2

− l2 cos[θ2[t]]θ2′
[t]2

− 2 sin[θ1[t]]θ1′
[t]l1′

[t]

−l1[t] sin[θ1[t]]θ1′′
[t] − l2 sin[θ2[t]]θ2′′

[t]

+ cos[θ1[t]]l1′′
[t])

+ 2l2 cos[θ2[t]](−l1[t] sin[θ1[t]]θ1′
[t]2

− l2 sin[θ2[t]]θ2′
[t]2

+ 2 cos[θ1[t]]θ1′
[t]l1′

[t]

+ cos[θ1[t]]l1[t]θ1′′
[t] + l2 cos[θ2[t]]θ2′′

[t]

+ sin[θ1[t]]l1′′
[t])) (A.3)
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