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Abstract: Criteria for overturning stability of flexible structures such as chimneys and towers are developed. To the authors’ knowledge
all published studies arrive at overturning stability conclusions and criteria based on rigid body motion of systems. This is the first attempt
to develop a simple design criterion that includes flexibility effects of slender structures to their overturning stability. The development is
based on expressing the system deformation in terms of generalized coordinates. Examples and parametric studies demonstrate use of
criteria as well as the role that each one of the most significant geometric, inertial, and spectral parameters plays on the overturnini
stability of towers and chimneys. The procedure could also be useful to address the inverse problem that is to estimate the groun
acceleration that caused the overturn of a slender structure.
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Introduction Furthermore, taking into account the supporting soil flexibility,
foundation uplift should be also included in the analysis. A com-

Several forms of towers and chimneys have been built in earth- prehensive review of studies on foundations in bilateral and uni-
quake areas, such as chimneys with supporting towers, guyedateral contact before 1988 has been presented by Spyrakos
structures, and structurally combined multiple chimnépsw- (Spyrakos 1988 American Technology CouncfATC) document
rick 1990. Towers and chimneys are among the geometrically ATC-40(ATC 1996 also includes an extensive list of pertinent
simplest structures subjected to earthquake motions. Howeverreferences in order to assist design engineers who would like to
they are more vulnerable to earthquake loads than the majority ofincorporate the effects of foundation uplift into their analysis.
the more redundant structural fornfRumman 196¥ Unlike Finite element method—boundary element method formulations
building structures with high degree-of-redundancy, little reliance have also been developed to study elastodynamic problems in-
should be placed on the ductile behavior of chimneys and towers, volving partial loss of contact and sliding between elastic bodies
since formation of one plastic hinge could lead to collapse, while (e.g., Patel and Spyrakos 1991;Wolf 199A representative ex-
inadequate design of their foundation could lead to local damageperimental study of the seismic response of a reinforced concrete
at the foundation level and even overturn. observation tower that has been carried out by Ganev 1305

Most design codes and research studies recommend usdound that partial separation of the structure from the soil occurs
of dynamic analysis to estimate the distribution and magnitude of under large dynamic loads, leading to changes in the predominant
forces for the seismic design of both steel and reinforced concretefrequency of the system and its response.
chimneys and tower6SEAOC 1967;Rinne 1970;ACI 1979;Berg A considerable number of studies on the overturn of tall slen-
1989;Spyrakos 1995;CEN 19p6lt is also recognized that, in  der structures as well as inverted pendulum type systems can be
many instances, seismic analysis of chimneys and towers shouldound in the literaturgHousner 1968 Most studies have been
also include the effects of shear and bending deformations, soil-spurred from either the surprisingly stable behavior of slender
structure interactipn, P-delta as well as rotational inertia, since thestructures against overturning or the need to develop methods to
contribution of all these effects could be significawtatt et al. prevent overturning and damage of furniture and equipment in-
1978; Luco 1986; Dowrick 1990; Spyrakos and Xu 1p97 stalled in buildings. Many researchers have also surveyed over-

turned bodies to estimate the seismic intensity of earthquakes.

lprofessor, Dept. of Civil Engineering, Laboratory for Earthquake The use of overturned tombstones to deduce the seismic intensity
Engineering, National Technical Univ. of Athens, Zografos 15700, has been a well-known practice. A thorough review of the up to
Athens, Greece; formerly, Professor, Dept. of Civil Engineering, West 1980 literature on the overturning of bodies during earthquakes
Virginia Univ., Morgantown, WV 26506corresponding authorE-mail: has been presented by Ishiyarfi®80. To the authors’ knowl-
spyrakos@hol.gr ~ edge all published studies arrive at overturning stability conclu-

Dept. of Civil Engineering, Laboratory for Earthquake Engineering, sions and criteria based on rigid body motion of the analyzed
National Technical Univ. of Athens, Zografos 15700, Athens, Greece.  gsystems. Little or no attention is placed on the flexibility effects of

Septh;?beﬁslsozcti)gf ggggrr;tsggsiﬁsiiofginuineDsiﬁ%ﬁZQ fg‘:ien”di\‘ji';tﬂailender structures on their overturning stability. This issue, how-
y X ver, is of increasing importance because of the large number of

papers. To extend the closing date by one month, a written request must lend truct built with ter f . f hiah
be filed with the ASCE Managing Editor. The manuscript for this paper slender structures bullt with greater frequency in areas or hig

was submitted for review and possible publication on October 30, 2002; S€iSMicity.

approved on August 23, 2004. This paper is part of Xbernal of En- This study is an attempt to address the aspect of overturning
gineering Mechanics Vol. 131, No. 4, April 1, 2005. ©ASCE, ISSN stability of towers, chimneys, and slender structures in general, as
0733-9399/2005/4-349-358/$25.00. the loss of it could lead to failure of such structural systems
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subjected to strong ground motions. The work presents the devel-  Substituting Eq.(2) into Eq. (1), multiplying the resulting
opment of criteria that can be used in conjunction with response equation byd(y), and then integrating over the beam length
spectra to assess the seismic vulnerability of slender structures taesults in

overturn. The criteria could also be used to estimate the seismic

intensity by overturn of flexible structures. m* g(t) +c* q(t) + k* q(t) = — md, Ug(t) 5

where

Formulation of Basic Expressions 1
m* = f md*(y)dy
Sufficient results for the seismic analysis and design of slender 0
structures, such as towers and chimneys, can be obtained with
beam type model$Pinfold 1975;Berg 1980 For such a beam 1
type structural system subjected to a seismic excitation, the equa- c* = f
tion of motion, neglecting shear deformations and rotatory inertia
effects, can be expressed by

) . 1
mu+cu+EIu" = -mi, (2) K* = f Eid)”(y)zdy
wherem=mass per unit lengtrE=Young’s modulus]=second 0
moment of areap=equivalent viscous damping coefficient per

ch?(y)dy
0

unit length; andil;=ground excitation. Furthermore, primé9 1
indicate derivatives with respect to the beam axind overdots ¢ = J d(y)dy (6)
() indicate derivatives with respect to time. For a single-degree- 0
of-freedom approximation, the relative displacemeran be ex- Ignoring the sign of the effective earthquake force, i.e., the
pressed in terms of space and time dependent functions as term on the right hand side of E¢p), Eq. (5) can be written as
u(y,t) = d(y)q(t) 2 md
4(t) + 260q(t) + w?q(t) = (1) (7)

where ¢(y)=normal mode shape anglt)=generalized coordi-
nate.

Although the higher modes may have a significant effect on
the response of a tall tower structure, the study attempts to de
velop a simple design criterion for overturning stability of slender
structures, based on a single mode domination of the dynamic
characteristics of the structure. The normal shdyg) corre-
sponding to the first mode can be evaluated by considering the 1
boundary conditions at the ends of the beam. At the top, the tower q(t) = My =T (8
is allowed to freely rotate and displace, while at the bottom the m* o
condition depends on the foundation type. Specifically, for a rela- \yhere
tively small and flexible foundation the condition can be assumed
to be free at the soil-foundation interfa®gO, (see Fig. 3, while f

m*

where w=fundamental natural frequency of the system and
_g=first modal equivalent damping ratio.

The solution of Eq.(7) can be expressed in terms of Du-
hamel’s integral expression for low-damped systems, as follows
(Clough and Penzien 1993

for a rather large and stiff foundation supporting a flexible tower )=
the condition can be estimated as fixage interfaceCD in Fig.

6). Note that both boundary conditions refer to the tower once it is The maximum absolute value over the entire earthquake his-
uplifted. Agsumlng thqt one end of the beam is fixed while thg tory |T'(t)|,a Of the earthquake response intedfél) in Eq. (9) is
othe_r end is free to vibrate, the corresponding normal shape isy,qo pseudovelocity spectral responSg (Clough and Penzien
(Craig 1981;Paz 1991 1993. Thus, the generalized coordinajeean be expressed as

Ug(Hexd - Ew(t—7)]sino(t - 7)dr 9
0

&(y) = (cosh 1.875¢/1 — cos 1.875¢/1)

_ Mmd,
— (sinh 1.875¥/1 - sin 1.875¥/1) 3) 9= o> (10
where The resistant base shear forgg and the overturning base
_ c0s 1.8751 + cosh 1.8751 rlngogrgenth are given by(Clough and Penzien 1993; Chopra
7 sin1.8751+sinh 1.8751
Similarly, the first mode shape for a beam with both ends free is V. = (md)')zmsu
given by (Pinfold 1975 P mx
b(y) =(cosh 4.78/1 + cos 4.73/1) — o(sinh 4.73/1 + sin 4.73/1) 1
4 My= "0, J myb(y)dy (11
where °
It is noted thatS, depends on the ground motion history as
o= cosh4.73 - cos 4-7§O 9825 well as the fundamental frequency of vibration and damping of
sinh4.73-sin4.73 the structure.
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Fig. 1. Flexible beam configuratior(a) Tall slender tower; andb) o> X
beam model with two degrees-of-freedom 0=q o
(b}
Derivation of Overturning Criterion Fig. 2. Overturning about bottom cornéa) Initial position (6=0);
and (b) final position(6=«a)
The configuration of a flexible slender structure is shown in Fig.
1. The motion of the beam type structure is expressed in terms of )
two generalized coordinates: the rotational anglessociated IOA9+m¢”Aq:%mIZAv
with the rigid body portion of the motion and the translational
deformationu(y,t) related to flexural deformed shape. md AO +m* Ag=mlAv (16
Consider a ground acceleration record composed of a se- :
quence oN discrete step changea# in ground velocity that are ~ where
randomly distributed and have equal probability of being positive 1
or negative in sign. This represents an idealized earthquake by =f yod(y)dy (172)
ground motion with a constant undamped average velocity re- 0
sponse spectrurtHousner 1968 The effect of such ground mo-
tion on structures is the same as if the ground were at rest and ly= %ml3 (17h)
impulsive inertial forcesk, were acting through the center of .
mass(see Fig. 1 where Solving the system of Eq16) for A6 and Aq leads to
FoAt= +mAp (12) A6 =AAy
The kinetic energy per unit length is given by )
o . _ Agq=BAv (19
KE = 2my?02 + mb2a + mydo (13 where
The inertial forces per unit length with respect toand q are %m* mi -2,
expressed by =t
— m* Iy = (mdy)
ad aKE—myZé+my<I>d
at 30 _ mlgl - %le2¢|| (19
_ m* |;_(m¢|l)2
J &K_E = myrbé +md2q (14) Similarly the kinetic energyKE) for the whole beam is ob-
gt dq tained by integrating Eq13) for the overall length and use of Eq.
Force equilibrium for a change of the external impulse velocity (17), thatis
and inertial forces is given b * . -
9 y KE = 21562 + md,, 04 + 2m* o2 (20

If the rocking beam is subjected to a series rofrandom
ground impulses, the incremental change in kinetic enaigi,
for the nth impulse is given by

Ab A
myZAt My =Y

myd,AA_f +m¢z%= F, (15 AKE; = 316(0n + A0,)2 = 315(60) + My (0 + A0,) (@ + Ad)
— 3 A +Em* (g + Ad )2 —Em* ()2
By substituting Eq(12) into Egs.(15) and integrating along My 0Ty + 5M* (Gy + AGn)" = 3M* (0ln) (21
the overall length, one arrives at the equilibrium equations of the  For earthquake excitations, it can be assumed that the average

whole beam Av is equal to zerdHousner 1968 Consequently, substituting
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y As shown in Fig. 2 overturning occurs through rotation of the
structure about one of the bottom corners. If the base of the struc-
ture is narrow, one can neglect the effect of the widttand
consider that overturning occurs through rotation about the center
O. The total potential energy chand®E, that is attributed to the
height difference between the initial positior=0 and the final
position6=«, shown in Fig. 2, is given by

1
APE :J mdy -y cosa+ usinaldy (24)
0

For smalla, Eq. (24) can be simplified to yield

APE =w[§|a2+ %aq] (25)

Fig. 3. Cross section of tower elevation whereW = total weight of the structure. The first term in Eg5)

is related to rigid body motion, while the second term is related to
. structural flexibility. In Eq.(25), and for a slender structure, one
A0 andAg from Eq.(18) into Eq. (21), performing the algebraic ~ may neglect the effect of the wid# on the rigid body motion to
calculations, and letting the average to be equal to zero, Eq.  obtain

(212) results in

AKE, = TyAv? (22 APE :W[%Raz + %aq] (26)
where

— 1% p2 1% p2 where R is practically half the height of the structure awnd
Tic= 2loA"+ MAB, +5m* B @3 ~tana=B/I [see Fig. 2a)].
Eq. (22) expresses the energy change caused by an earthquake The strain energy attributed to flexibility is given €raig
excitation. 198)

Table 1. Critical Spectral Velocity(S,o) for Tower without Foundation

Rigid block Flexible
S,o(m/s) So(m/s) Difference
[Eq. (35— [Eq. (35)—Eq. (31
B Eq. (31, Eq. (31, Eq. (34 )/Eq. (35 cantilever bearfiEqg. (35)
(m) 1/B Eqg. (33 Eq. (34 Eq. (35 cantilever beam free beam (%) (%)
5 3.43 3.96 4.00 2.43 2.62 0.98 39.36
6 3.13 3.62 3.64 2.22 2.38 0.68 39.02
7 2.90 3.35 3.36 2.06 2.20 0.50 38.66
8 2.71 3.13 3.14 1.94 2.06 0.39 38.27
9 2.56 2.95 2.96 1.84 1.94 0.31 37.85
12 10 2.43 2.80 2.81 1.76 1.84 0.25 37.40
11 2.31 2.67 2.68 1.69 1.75 0.21 36.93
12 2.21 2.56 2.56 1.63 1.68 0.17 36.43
13 2.13 2.46 2.46 1.58 1.61 0.15 35.91
14 2.05 2.37 2.37 1.53 1.55 0.13 35.36
15 1.98 2.29 2.29 1.49 1.50 0.11 34.79
5 2.43 2.80 2.83 1.71 1.85 0.98 39.62
6 2.21 2.56 2.57 1.56 1.69 0.68 39.38
7 2.05 2.37 2.38 1.45 1.56 0.50 39.11
8 1.92 2.21 2.22 1.36 1.46 0.39 38.82
9 1.81 2.09 2.09 1.29 1.37 0.31 38.51
6 10 1.72 1.98 1.99 1.23 1.30 0.25 38.18
11 1.64 1.89 1.89 1.18 1.24 0.21 37.84
12 1.57 1.81 1.81 1.13 1.19 0.17 37.47
13 1.50 1.74 1.74 1.09 1.14 0.15 37.09
14 1.45 1.67 1.68 1.06 1.10 0.13 36.69
15 1.40 1.62 1.62 1.03 1.06 0.11 36.27
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Fig. 4. Variation of critical spectral velocity,o with slenderness ratit/ B for tower without foundatiofB=12 m)

U=K? 2 2
. @ [ Ref + -~ d)l j)l Suo] _Ke( Mo ) So=TkSo (30
where o m* o
1 where S, the critical overturning velocity, denotes the spectral
Ke:J ZEId"(y)?dy (29 velocity that will cause overturning of the structure. With simple
0 algebraic manipulations E@30) takes the form
The condition for overturning at the end ofpulses is devel-
oped by equating the difference between the total potential energy |:TK +K ( ) ]Sfo mofa _ %WR& =0 (31
changeAPE and the strain energy to the energy change caused m* loo
by the earthquake excitatiohKE,, that is Eq. (31) establishes an overturning criterion as a function of
. b the critical overturning velocitys,o, the inertial and the geometric
W| sR& + - Ked? = Ti(Av)? (29 parameters of a flexible system. For a given site and tower height,

Eq. (31) can be used in a preliminary design to select the appro-
If the energy input is computed from the velocity response priate dimensions for the foundation in order to avoid overturn-

spectrum of the earthquake ground motion, &9) can be writ- ing. Furthermore, the same equation could be used to address the
ten in terms of Eq(10) as inverse problem that is to estimate the ground velocity that caused
4.00
-~=Eq.(33)
— —Eq. (34)
----- Eq. (35)

—— Eq. (31), cantilever beam
—— Eq. (31), free beam

3.00 |

0‘00 1 1 1 1 A 1 L 1 1 L L 1 i 1 n 1 1 1

Fig. 5. Variation of critical spectral velocity,o with slenderness ratit/ B for tower without foundatiofB=6 m)
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subject of several studies on the overturn of primarily rigid bodies

the overturn of a slender structure, a procedure that has been the I M

(e.g. Apostolou et al. 2001
If structural flexibility is neglected, Eq31) can be simplified
to the following form that has been proposed by Hougi663:

2
a=i\/ﬂ (32
VgR Vo

whereM =total mass of the system.

The procedure to arrive at E(32) involves elimination of the
second and third terms in E31) and the last two terms on the
right hand side of Eq(23).

For slender structures, if we assume th&®?/1, has a value
close to unity(Housner 1968 then Eq.(32) takes the form

_So
=
VgR

If MR?/1, is set as equal to 3/dshiyama 198)) then Eq.(32)

takes the form
3
=1/— 34
a=+/ 4gRSUo (34

It should be noted that in both E¢83) and(34), R is assumed to
be equal to half the height of structufsee Fig. 23)]. A more

a (33

accurate consideration would be to consider the moment of inertia

with respect to the corner poi@; and the effect of the widtiB.
In this casex is evaluated from

a:i\/ﬁ2 (35)
VgR V o,

Numerical Examples

The significance of either accounting for or ignoring flexibility in

r

r2

o O

Fig. 6. Tower with tapered foundation

on the ground without any anchorage that could restrain uplift and
overturn. The study also examines the relative significance of
various geometric parameters for the tower simulated as a rigid
body. In all studies the width of the structuBeis assigned two
different values:B=2r,=6 m andB=2r,=12 m. For the tower
with B=6 m, the height varies from 30 to 90-m in increments of
6 m, the inner radius is=2.4 m, and the outside radius iig
=3 m. For the tower wittlB=12 m, the height varies from 60 m
180 m in increments of 12 m, the inner radius #5.4 m, and the
outside radius isy=6 m. The tower is made of concrete with a
Young’s modulusE=31 GPa and a unit weight of 24.35 kN?m
For the case of a rigid tower the critical overturning velocity

overturning criteria is investigated through parametric studies andS,y is evaluated for varyindg@ and |/B as expressed by Egs.
comparisons. Parametric studies are performed for a tower with(33)—(35) and the results are presented in Table 1. The difference
the geometry shown in Fig. 3. The tower foundation simply rests between the criteria expressed by E@3)—(35) is that the first

5.00
----- r2/=1/8
=2l =16
400 F r2l = 1/4
3.00 b TN
> | e T
e T e e
S
w 2.00 |
1.00 |
i
000 oo e e
5 6 7 8 9 10 11 12 13 14 15

Fig. 7. Variation of critical spectral velocit,q with slenderness ratit/ B for different values of ,/I (B=12 m)
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Fig. 8. Variation of critical spectral velocit®,, with slenderness ratit/ B for different values of ,/I (B=6 m)

two equations are based on the evaluatioh,efith respect to the connection of the foundation to the tower is assumed to be mono-

base center of the tower, while the latter ukgswhich refers to lithic and, therefore, the normal shape corresponding to the first
one of the bottom edges of the foundation. The information in mode of a cantilever beam, that is H®), is used for the over-
Table 1 is also presented in Figs. 4 and 5 Bx12 m andB turning criterion.

=6 m, respectively. It is observed that Housner’s calculatioa of Parametric studies are performed for a hollow cylindrical

given by Eq.(33) is more conservative than Ishiyama’s, expressed tower bonded to a slopped foundatigtig. 6) in order to examine
by Eq. (34). The results in column 8 of Table 1 clearly demon-
strate that the results of E(B4) are almost identical to the ones
obtained by Eq(35). Therefore use of the moment of inertia with
respect to the base center is reasonable for slender towers.
The overturning stability for a tower with the geometry shown

Table 2. Critical Spectral Velocity(S,o) for Tower Supported by Foun-
dation with Variable Diameter

in Fig. 3 but including flexibility is evaluated using E®1). Figs. Flexible

4 and 5 also show the critical spectral veloc8y for B=12 and S0 (M/9

6 m, respectively. Two different cases in terms of boundary con-

ditions, i.e., a cantilever beam and a free beam, are examined. Itis B(m) I/B rp/1=1/8 ro/1=1/6 ra/l=1/4

observed that, although for lower values|éB a free beam re- 5 3.28 3.49 4.05
sults in a higher critical overturning velocity,,, both cases con- 6 3.00 3.23 3.82
verge to practically the same solution for high values of the slen- 7 281 3.04 3.66
derness ratio. Table 1 demonstrates the difference of either

. . . . R . - 8 2.66 291 3.54
including or ignoring tower flexibility in overturning stability. As 9 254 280 3.47
shown in column 9 of Table 1 the critical spectralvelocity of the ' ' '

flexible tower is less than that of the tower modeled as a rigid 12 10 2.45 2.72 3.42
block with the same geometric dimensions. This implies that es- 1 2.37 2.66 3.38
timating S, based on the idealization of the tower as a rigid body 12 2.32 2.62 3.37
is not conservative. For most cases the reduced spectral velocity 13 2.27 2.58 3.36
of the flexible idealization is about 37% of the rigid model. 14 2.23 2.56 3.37

The typical case of a hollow cylindrical tower supported by a 15 2.20 2.54 3.39

rigid circular slopped foundation is also investigatsde Fig. 6.
It should be noted that the tower flexibility is taken into account 5 2.40 2.55 2.93
in all parametric studies in order to assess the effect of the foun- 6 2.18 2.34 2.74
dation on the overturning stability of the superstructure because 7 2.03 2.19 2.61
such a model is considered as a more realistic approximation of 8 1.91 2.08 252
the actual structural system compared to the rigid body idealiza- 9

: f : 1ae: 1.82 1.99 2.45
tion. The presence of the foundation complicates the derivation of ¢ 10 1.74 1.93 240
the overturning criterion. Nevertheless, Eg1) can still be used 11 1.69 188 237
as an overturning criterion. However, use of E81) requires 12 164 184 234
evaluation of both the fundamental frequency of the tower with ' ’ '
X ) A 13 1.60 1.81 2.33
the foundation. Therefore, Eq17b) is modified in order to ac- 14 157 178 533
count for the moment of inertia of the whole structure with re- : ’ '
15 1.54 1.76 2.33

spect to the edge poid; as shown in Fig. 6. Furthermore, the
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Fig. 9. Variation of critical spectral velocit,y with foundation height for different values of,/I (B=12 m)

the effect of slenderness on overturning stability. The width of the  In Figs. 9 and 10, the critical spectral velociy, is plotted
structure is assigned two different valu€d=2r,=6 m andB against the foundation heightfor B=12 and 6 m, respectively. It
=2r,=12 m. Figs. 7 and 8 illustrate the critical spectral velocity should be noted that for the tower wiB=6 m, the height is 60
for B=12 and 6 m, respectively, as a function of the slendernessm, based on a slenderness ratio equal to ten, the top radiss
ratio /B, while Table 2 lists the resulting,, for three represen- 3.5 m, and the bottom radius varies from 7.5 to 15 m. For the
tative values of the,/I ratio (Pinfold 1975. For the tower with tower with B=12 m, the height is 120 m (I/B=10), the top

B=6 m, the foundation heiglitis 3 m, the top radius; is 3.5 m, radiusr, is 6.5 m, and the bottom radiug varies from 15 to 30
and the bottom radius, varies from 3.75 to 22.5 m. For the tower m. It is observed thag,, increases with increasing foundation
with B=12 m, the foundation heiglitis 3 m, the top radius; is height. In both figures the increase is more apparent for higher

6.5 m, and the bottom radius varies from 7.5 to 45 m. Both values ofr,/l. As it can be seen in Table 3, fd=12 m, the
Figs. 7 and 8 demonstrate the same trend, i.e., the critical spectratritical velocity increases from 2.60 to 4.23 m/s fo/l=1/4,
velocity decreases with increasing slenderness ratio in an almostwhich is approximately 63%, while it only increases about 32%
linear variation. Furthermore, flexible towers supported by a nar- for r,/1=1/8. Similarly, for B=6 m, the increase of the critical
row foundation are more vulnerable to overturn due to ground spectral velocity is 68% for,/I=1/4 andjust 37% forr,/I
motion compared to towers on a wider foundation. =1/8. It is also worth noting that the relationship between the

4.00

3.00

°
% 2.00
N
4
~~~~~ r2/ = 1/8
-2 =1/6
1.00 + 2= 1/4
0.00 . : . : . -
1 2 3 4 5

h (m)

Fig. 10. Variation of critical spectral velocitys,o with foundation height for different values of,/1 (B=6 m)
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Table 3. Critical Spectral Velocity(S,o) for Tower Supported by Foun-

dation with Variable Height

Flexible
So (m/9
B (m) h (m) r,/1=1/8 r,/1=1/6 r,/1=1/4
1 2.12 2.26 2.60
2 2.31 2.52 3.06
12 3 2.48 2.76 3.48
4 2.64 2.99 3.86
5 2.80 3.21 4.23
1 1.50 1.59 1.82
2 1.65 1.79 2.17
6 3 1.79 1.98 2.48
4 1.92 2.17 2.78
5 2.05 2.34 3.06

KE = kinetic energy for whole beam;
| = beam length;
M = total mass of system;
M, = overturning base moment;
m = mass per unit length of beam;
g(t) = generalized coordinate;
R = distance between center of gravity and corner
point of structure;
r = inner radius of hollow cylindrical tower;
ro = outside radius of hollow cylindrical tower;
r, = top radius of slopped foundation;
r, = bottom radius of slopped foundation;
S, = pseudovelocity spectral response;
S,o = critical overturning velocity;
U = strain energy attributed to flexibility;
u(y,t) = relative displacement perpendicular to beam axis;
Uy = ground excitation;
V, = resistant base shear force;
W = total weight of structure;
o = rotational angle of structure when overturn occurs;

critical overturning velocity and the foundation height is almost AKE, = incremental change in kinetic energy fiath
linear for all ther,/| ratios examined.

impulse;
APE = total potential energy change;
At = step changes in time;

Conclusions *+4v = discrete step changes in ground velocity;
6 = rotational angle;
Criteria for the overturning stability of slender structures, such as ¢ = damping ratio;

chimneys and towers, based on a single mode domination of the ¢(y) = normal mode shape; and
w

dynamic characteristics of the structure are developed. The over-

= natural frequency of the system.

turning criteria relate the structural stiffness and inertia param-

eters to the spectral pseudovelocity of the ground motion.
Numerical examples, parametric studies, and comparisons il-References

lustrate the significance of either accounting for or ignoring flex-

ibility in overturning criteria. The parametric studies lead to the american Concrete InstituteACl). (1979. “Specification for the design

following conclusions: flexibility reduces the magnitude of spec- and construction of reinforced concrete chimneysCl307-79 De-

tral pseudovelocity that causes overturn. This implies that esti-  troit.

mating S,y based on the idealization of the tower as a rigid body Apostolou, M., Anastasopoulos, ., and Gazetas(ZB01). “Analysis of

is unconservative. The critical spectral velocity decreases for in-  sliding and overturning of monuments in the Parnitha earthquake for

creasing slenderness ratio. Keeping the slenderness ratio constant, estimating the ground acceleratiorPtoc., 2nd Hellenic Symp. on

the critical spectral velocity causing overturning decreases for  Earthquake Engineering and Seismolp@hessaloniki, Greece, 195—

decreasing geometric size of the tower. Parametric studies also 203.

show that the presence of even a very narrow foundation has a”Pplied Technology CouncilATC). (1996. "ATC-40 seismic evaluation

beneficial effect on the overturning stability of a flexible tower.
Furthermore, the vulnerability of the tower decreases by increas-

ing either the foundation diameter or the foundation height.

The procedure could also be useful to address the inverse
problem that is to estimate the ground velocity that caused the

overturn of a slender structure.

Notation

The following symbols are used in this paper:

width of structure;

viscous damping;
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