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Overturning Stability Criteria for Flexible Structures
to Earthquakes

C. C. Spyrakos, M.ASCE,1 and G. S. Nikolettos2

Abstract: Criteria for overturning stability of flexible structures such as chimneys and towers are developed. To the authors’ k
all published studies arrive at overturning stability conclusions and criteria based on rigid body motion of systems. This is the fir
to develop a simple design criterion that includes flexibility effects of slender structures to their overturning stability. The develo
based on expressing the system deformation in terms of generalized coordinates. Examples and parametric studies demonstr
criteria as well as the role that each one of the most significant geometric, inertial, and spectral parameters plays on the o
stability of towers and chimneys. The procedure could also be useful to address the inverse problem that is to estimate
acceleration that caused the overturn of a slender structure.

DOI: 10.1061/~ASCE!0733-9399~2005!131:4~349!

CE Database subject headings: Earthquakes; Structural stability; Flexibility.
arth-
uyed

ally
ever,
ity of

nce
wers,
hile
age

use
e of
crete
rg
in
hould
soil–
e the

7

ility,
om-
uni-
rakos
t
ent
ke to
sis.
tions
s in-
dies
-
crete

curs
inant

len-
an be
en
nder
ds to
t in-
over-
akes.
ensity
p to
akes
l-
clu-

yzed
s of
how-
er of
high

rning
al, as

ake
700,

est

ing,
e.
until
ividua
t must
aper
002;
Introduction

Several forms of towers and chimneys have been built in e
quake areas, such as chimneys with supporting towers, g
structures, and structurally combined multiple chimneys~Dow-
rick 1990!. Towers and chimneys are among the geometric
simplest structures subjected to earthquake motions. How
they are more vulnerable to earthquake loads than the major
the more redundant structural forms~Rumman 1967!. Unlike
building structures with high degree-of-redundancy, little relia
should be placed on the ductile behavior of chimneys and to
since formation of one plastic hinge could lead to collapse, w
inadequate design of their foundation could lead to local dam
at the foundation level and even overturn.

Most design codes and research studies recommend
of dynamic analysis to estimate the distribution and magnitud
forces for the seismic design of both steel and reinforced con
chimneys and towers~SEAOC 1967;Rinne 1970;ACI 1979;Be
1989;Spyrakos 1995;CEN 1996!. It is also recognized that,
many instances, seismic analysis of chimneys and towers s
also include the effects of shear and bending deformations,
structure interactipn, P-delta as well as rotational inertia, sinc
contribution of all these effects could be significant~Watt et al.
1978; Luco 1986; Dowrick 1990; Spyrakos and Xu 199!.
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Furthermore, taking into account the supporting soil flexib
foundation uplift should be also included in the analysis. A c
prehensive review of studies on foundations in bilateral and
lateral contact before 1988 has been presented by Spy
~Spyrakos 1988!. American Technology Council~ATC! documen
ATC-40 ~ATC 1996! also includes an extensive list of pertin
references in order to assist design engineers who would li
incorporate the effects of foundation uplift into their analy
Finite element method–boundary element method formula
have also been developed to study elastodynamic problem
volving partial loss of contact and sliding between elastic bo
~e.g., Patel and Spyrakos 1991;Wolf 1994!. A representative ex
perimental study of the seismic response of a reinforced con
observation tower that has been carried out by Ganev et al.~1995!
found that partial separation of the structure from the soil oc
under large dynamic loads, leading to changes in the predom
frequency of the system and its response.

A considerable number of studies on the overturn of tall s
der structures as well as inverted pendulum type systems c
found in the literature~Housner 1963!. Most studies have be
spurred from either the surprisingly stable behavior of sle
structures against overturning or the need to develop metho
prevent overturning and damage of furniture and equipmen
stalled in buildings. Many researchers have also surveyed
turned bodies to estimate the seismic intensity of earthqu
The use of overturned tombstones to deduce the seismic int
has been a well-known practice. A thorough review of the u
1980 literature on the overturning of bodies during earthqu
has been presented by Ishiyama~1980!. To the authors’ know
edge all published studies arrive at overturning stability con
sions and criteria based on rigid body motion of the anal
systems. Little or no attention is placed on the flexibility effect
slender structures on their overturning stability. This issue,
ever, is of increasing importance because of the large numb
slender structures built with greater frequency in areas of
seismicity.

This study is an attempt to address the aspect of overtu
stability of towers, chimneys, and slender structures in gener

l

the loss of it could lead to failure of such structural systems
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subjected to strong ground motions. The work presents the d
opment of criteria that can be used in conjunction with resp
spectra to assess the seismic vulnerability of slender structu
overturn. The criteria could also be used to estimate the se
intensity by overturn of flexible structures.

Formulation of Basic Expressions

Sufficient results for the seismic analysis and design of sle
structures, such as towers and chimneys, can be obtained
beam type models~Pinfold 1975;Berg 1989!. For such a beam
type structural system subjected to a seismic excitation, the
tion of motion, neglecting shear deformations and rotatory in
effects, can be expressed by

mü+ cu̇+ EIu99 = − müg s1d

wherem5mass per unit length;E5Young’s modulus;I5second
moment of area;c5equivalent viscous damping coefficient
unit length; andüg5ground excitation. Furthermore, primes~8!
indicate derivatives with respect to the beam axisy and overdot
~·! indicate derivatives with respect to time. For a single-deg
of-freedom approximation, the relative displacementu can be ex
pressed in terms of space and time dependent functions as

usy,td = fsydqstd s2d

where fsyd5normal mode shape andqstd5generalized coord
nate.

Although the higher modes may have a significant effec
the response of a tall tower structure, the study attempts t
velop a simple design criterion for overturning stability of slen
structures, based on a single mode domination of the dyn
characteristics of the structure. The normal shapefsyd corre-
sponding to the first mode can be evaluated by considerin
boundary conditions at the ends of the beam. At the top, the t
is allowed to freely rotate and displace, while at the bottom
condition depends on the foundation type. Specifically, for a
tively small and flexible foundation the condition can be assu
to be free at the soil–foundation interfaceO2O1 ~see Fig. 3!, while
for a rather large and stiff foundation supporting a flexible to
the condition can be estimated as fixed~see interfaceCD in Fig.
6!. Note that both boundary conditions refer to the tower once
uplifted. Assuming that one end of the beam is fixed while
other end is free to vibrate, the corresponding normal sha
~Craig 1981;Paz 1991!

fsyd = scosh 1.8751y/l − cos 1.8751y/ld

− sssinh 1.8751y/l − sin 1.8751y/ld s3d

where

s =
cos 1.8751 + cosh 1.8751

sin 1.8751 + sinh 1.8751
= 0.734

Similarly, the first mode shape for a beam with both ends fre
given by ~Pinfold 1975!

fsyd = scosh 4.73y/l + cos 4.73y/ld − sssinh 4.73y/l + sin 4.73y/ld

s4d

where

s =
cosh 4.73 − cos 4.73

= 0.9825

sinh 4.73 − sin 4.73
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Substituting Eq.~2! into Eq. ~1!, multiplying the resulting
equation byfsyd, and then integrating over the beam lengtl,
results in

m* q̈std + c * q̇std + k * qstd = − mfIügstd s5d

where

m* = E
0

1

mf2syddy

c * = E
0

1

cf2syddy

k * = E
0

1

Eİf9syd2dy

fI =E
0

1

fsyddy s6d

Ignoring the sign of the effective earthquake force, i.e.,
term on the right hand side of Eq.~5!, Eq. ~5! can be written as

q̈std + 2jvq̇std + v2qstd =
mfI

m*
ügstd s7d

where v5fundamental natural frequency of the system
j5first modal equivalent damping ratio.

The solution of Eq.~7! can be expressed in terms of D
hamel’s integral expression for low-damped systems, as fo
~Clough and Penzien 1993!:

qstd =
mwI

m*
.

1

v
. Gstd s8d

where

Gstd =E
0

t

ügstdexpf− jvst − tdgsinvst − tddt s9d

The maximum absolute value over the entire earthquake
tory uGstdumax of the earthquake response integralGstd in Eq. ~9! is
the pseudovelocity spectral responseSv ~Clough and Penzie
1993!. Thus, the generalized coordinateq can be expressed as

q =
mfI

m* v
Sv s10d

The resistant base shear forceVb and the overturning ba
moment Mb are given by~Clough and Penzien 1993; Cho
1995!

Vb =
smfId2

m*
vSv

Mb =
mfI

m*
vSvE

0

1

myfsyddy s11d

It is noted thatSv depends on the ground motion history
well as the fundamental frequency of vibration and dampin

the structure.
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Derivation of Overturning Criterion

The configuration of a flexible slender structure is shown in
1. The motion of the beam type structure is expressed in term
two generalized coordinates: the rotational angleu associate
with the rigid body portion of the motion and the translatio
deformationusy,td related to flexural deformed shape.

Consider a ground acceleration record composed of a
quence ofN discrete step changes ±Dv in ground velocity that ar
randomly distributed and have equal probability of being pos
or negative in sign. This represents an idealized earthq
ground motion with a constant undamped average velocit
sponse spectrum~Housner 1963!. The effect of such ground m
tion on structures is the same as if the ground were at res
impulsive inertial forcesFn were acting through the center
mass~see Fig. 1! where

FnDt = ± mDv s12d

The kinetic energy per unit length is given by

KE = 1
2my2u̇2 + 1

2mf2q̇2 + myfq̇u̇ s13d

The inertial forces per unit length with respect tou and q are
expressed by

] ] KE

]t ] u̇
= my2ü + myfq̈

] ] KE

]t ] q̇
= myfü + mf2q̈ s14d

Force equilibrium for a change of the external impulse velo
and inertial forces is given by

my2Du̇

Dt
+ myf

Dq̇

Dt
= Fny

myf
Du̇

Dt
+ mf2Dq̇

Dt
= Fn s15d

By substituting Eq.~12! into Eqs.~15! and integrating alon
the overall length, one arrives at the equilibrium equations o

Fig. 1. Flexible beam configuration:~a! Tall slender tower; and~b!
beam model with two degrees-of-freedom
whole beam

JOU
I0
*Du̇ + mfIIDq̇ = 1

2ml2Dv

mfIIDu̇ + m* Dq̇ = mlDv s16d

where

fII =E
0

1

yfsyddy s17ad

I0
* = 1

3ml3 s17bd

Solving the system of Eq.~16! for Du̇ andDq̇ leads to

Du̇ = ADv

Dq̇ = BDv s18d

where

A =
1
2m* ml2 − m2lfII

m* I0
* − smfIId2

B =
mI0

* l − 1
2m2l2fII

m* I0
* − smfIId2 s19d

Similarly the kinetic energy~KE! for the whole beam is ob
tained by integrating Eq.~13! for the overall length and use of E
~17!, that is

KE = 1
2I0

* u̇2 + mfII u̇q̇ + 1
2m* q̇2 s20d

If the rocking beam is subjected to a series ofn random
ground impulses, the incremental change in kinetic energyDKEn

for the nth impulse is given by

DKEn = 1
2I0

*su̇n + Du̇nd2 − 1
2I0

*su̇nd2 + mfIIsu̇n + Du̇ndsq̇n + Dq̇nd

− mfII u̇nq̇n + 1
2m* sq̇n + Dq̇nd2 − 1

2m* sq̇nd2 s21d

For earthquake excitations, it can be assumed that the av

Fig. 2. Overturning about bottom corner~a! Initial position su=0d;
and ~b! final positionsu=ad
Dv is equal to zero~Housner 1963!. Consequently, substituting
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Du̇ andDq̇ from Eq. ~18! into Eq. ~21!, performing the algebra

calculations, and letting the averageDv to be equal to zero, E
~21! results in

DKEn = TKDv2 s22d

where

TK = 1
2I0

*A2 + mABfII + 1
2m* B2 s23d

Eq. ~22! expresses the energy change caused by an earth
excitation.

Table 1. Critical Spectral VelocitysSv0d for Tower without Foundation

B
~m! l /B

Rigid block

Sv0sm/sd

Eq. ~33! Eq. ~34! Eq. ~35!
Eq. ~3

cantileve

5 3.43 3.96 4.00 2.

6 3.13 3.62 3.64 2.

7 2.90 3.35 3.36 2.

8 2.71 3.13 3.14 1.

9 2.56 2.95 2.96 1.

12 10 2.43 2.80 2.81 1

11 2.31 2.67 2.68 1.

12 2.21 2.56 2.56 1.

13 2.13 2.46 2.46 1.

14 2.05 2.37 2.37 1.

15 1.98 2.29 2.29 1.

5 2.43 2.80 2.83 1.

6 2.21 2.56 2.57 1.

7 2.05 2.37 2.38 1.

8 1.92 2.21 2.22 1.

9 1.81 2.09 2.09 1.

6 10 1.72 1.98 1.99 1.

11 1.64 1.89 1.89 1.

12 1.57 1.81 1.81 1.

13 1.50 1.74 1.74 1.

14 1.45 1.67 1.68 1.

Fig. 3. Cross section of tower elevation
352 / JOURNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2005
As shown in Fig. 2 overturning occurs through rotation of
structure about one of the bottom corners. If the base of the
ture is narrow, one can neglect the effect of the widthB and
consider that overturning occurs through rotation about the c
O. The total potential energy changeDPE, that is attributed to th
height difference between the initial positionu=0 and the fina
positionu=a, shown in Fig. 2, is given by

DPE =E
0

1

mgfy − y cosa + u sinagdy s24d

For smalla, Eq. ~24! can be simplified to yield

DPE =WF 1
4la2 +

fI

l
aqG s25d

whereW 5 total weight of the structure. The first term in Eq.~25!
is related to rigid body motion, while the second term is relate
structural flexibility. In Eq.~25!, and for a slender structure, o
may neglect the effect of the widthB on the rigid body motion t
obtain

DPE =WF 1
2Ra2 +

fI

l
aqG s26d

where R is practically half the height of the structure anda
< tana=B/ l @see Fig. 2~a!#.

The strain energy attributed to flexibility is given by~Craig
1981!

xible

/sd Difference

Eq. ~31!,
free beam

@Eq. ~35!2
Eq. ~34!#/Eq. ~35!

~%!

@Eq. ~35!2Eq. ~31!
cantilever beam#/Eq. ~35!

~%!

2.62 0.98 39.36

2.38 0.68 39.02

2.20 0.50 38.66

2.06 0.39 38.27

1.94 0.31 37.85

1.84 0.25 37.40

1.75 0.21 36.93

1.68 0.17 36.43

1.61 0.15 35.91

1.55 0.13 35.36

1.50 0.11 34.79

1.85 0.98 39.62

1.69 0.68 39.38

1.56 0.50 39.11

1.46 0.39 38.82

1.37 0.31 38.51

1.30 0.25 38.18

1.24 0.21 37.84

1.19 0.17 37.47

1.14 0.15 37.09

1.10 0.13 36.69
Fle

Sv0sm

1!,
r beam

43

22

06

94

84

.76

69

63

58

53

49

71

56

45

36

29

23

18

13

09

06

15 1.40 1.62 1.62 1.03 1.06 0.11 36.27
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U = Keq
2 s27d

where

Ke =E
0

1
1
2EIf9syd2dy s28d

The condition for overturning at the end ofn pulses is deve
oped by equating the difference between the total potential e
changeDPE and the strain energyU to the energy change caus
by the earthquake excitationDKEn, that is

WF 1
2Ra2 +

fI

l
aqG − Keq

2 = TKsDvd2 s29d

If the energy input is computed from the velocity respo
spectrum of the earthquake ground motion, Eq.~29! can be writ-
ten in terms of Eq.~10! as

Fig. 4. Variation of critical spectral velocitySv0 with s

Fig. 5. Variation of critical spectral velocitySv0 with
JOU
WF 1
2Ra2 +

fI

l
a

mfI

m* v
Sv0G − KeS mfI

m* v
D2

Sv0
2 = TKSv0

2 s30d

whereSv0, the critical overturning velocity, denotes the spec
velocity that will cause overturning of the structure. With sim
algebraic manipulations Eq.~30! takes the form

FTK + KeS mfI

m* v
D2GSv0

2 − W
mfI

2a

m* lv
Sv0 − 1

2WRa2 = 0 s31d

Eq. ~31! establishes an overturning criterion as a functio
the critical overturning velocitySv0, the inertial and the geomet
parameters of a flexible system. For a given site and tower h
Eq. ~31! can be used in a preliminary design to select the ap
priate dimensions for the foundation in order to avoid overt
ing. Furthermore, the same equation could be used to addre
inverse problem that is to estimate the ground velocity that ca

rness ratiol /B for tower without foundationsB=12 md

rness ratiol /B for tower without foundationsB=6 md
lende
slende
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the overturn of a slender structure, a procedure that has be
subject of several studies on the overturn of primarily rigid bo
~e.g. Apostolou et al. 2001!.

If structural flexibility is neglected, Eq.~31! can be simplified
to the following form that has been proposed by Housner~1963!:

a =
Sv0

ÎgR
ÎMR2

I0
* s32d

whereM5total mass of the system.
The procedure to arrive at Eq.~32! involves elimination of th

second and third terms in Eq.~31! and the last two terms on t
right hand side of Eq.~23!.

For slender structures, if we assume thatMR2/ I0
* has a valu

close to unity~Housner 1963!, then Eq.~32! takes the form

a =
Sv0

ÎgR
s33d

If MR2/ I0 is set as equal to 3/4~Ishiyama 1980!, then Eq.~32!
takes the form

a =Î 3

4gR
Sv0 s34d

It should be noted that in both Eqs.~33! and~34!, R is assumed t
be equal to half the height of structure@see Fig. 2~a!#. A more
accurate consideration would be to consider the moment of in
with respect to the corner pointO1 and the effect of the widthB.
In this casea is evaluated from

a =
Sv0

ÎgR
ÎMR2

IO1

s35d

Numerical Examples

The significance of either accounting for or ignoring flexibility
overturning criteria is investigated through parametric studies
comparisons. Parametric studies are performed for a tower
the geometry shown in Fig. 3. The tower foundation simply r

Fig. 7. Variation of critical spectral velocitySv0 with
354 / JOURNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2005
on the ground without any anchorage that could restrain uplif
overturn. The study also examines the relative significanc
various geometric parameters for the tower simulated as a
body. In all studies the width of the structureB is assigned tw
different values:B=2r0=6 m andB=2r0=12 m. For the towe
with B=6 m, the heightl varies from 30 to 90–m in increments
6 m, the inner radius isr =2.4 m, and the outside radius isr0

=3 m. For the tower withB=12 m, the heightl varies from 60 m
180 m in increments of 12 m, the inner radius isr =5.4 m, and th
outside radius isr0=6 m. The tower is made of concrete with
Young’s modulusE=31 GPa and a unit weight of 24.35 kN/m3.

For the case of a rigid tower the critical overturning velo
Sv0 is evaluated for varyingB and l /B as expressed by Eq
~33!–~35! and the results are presented in Table 1. The differ
between the criteria expressed by Eqs.~33!–~35! is that the firs

Fig. 6. Tower with tapered foundation

erness ratiol /B for different values ofr2/ l sB=12 md
slend
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two equations are based on the evaluation ofI0
* with respect to th

base center of the tower, while the latter usesIO1 which refers to
one of the bottom edges of the foundation. The informatio
Table 1 is also presented in Figs. 4 and 5 forB=12 m andB
=6 m, respectively. It is observed that Housner’s calculationa
given by Eq.~33! is more conservative than Ishiyama’s, expres
by Eq. ~34!. The results in column 8 of Table 1 clearly dem
strate that the results of Eq.~34! are almost identical to the on
obtained by Eq.~35!. Therefore use of the moment of inertia w
respect to the base center is reasonable for slender towers.

The overturning stability for a tower with the geometry sho
in Fig. 3 but including flexibility is evaluated using Eq.~31!. Figs.
4 and 5 also show the critical spectral velocitySv0 for B=12 and
6 m, respectively. Two different cases in terms of boundary
ditions, i.e., a cantilever beam and a free beam, are examine
observed that, although for lower values ofl /B a free beam re
sults in a higher critical overturning velocitySv0, both cases con
verge to practically the same solution for high values of the s
derness ratio. Table 1 demonstrates the difference of e
including or ignoring tower flexibility in overturning stability. A
shown in column 9 of Table 1 the critical spectralvelocity of
flexible tower is less than that of the tower modeled as a
block with the same geometric dimensions. This implies tha
timatingSv0 based on the idealization of the tower as a rigid b
is not conservative. For most cases the reduced spectral ve
of the flexible idealization is about 37% of the rigid model.

The typical case of a hollow cylindrical tower supported b
rigid circular slopped foundation is also investigated~see Fig. 6!.
It should be noted that the tower flexibility is taken into acco
in all parametric studies in order to assess the effect of the
dation on the overturning stability of the superstructure bec
such a model is considered as a more realistic approximati
the actual structural system compared to the rigid body idea
tion. The presence of the foundation complicates the derivati
the overturning criterion. Nevertheless, Eq.~31! can still be use
as an overturning criterion. However, use of Eq.~31! requires
evaluation of both the fundamental frequency of the tower
the foundation. Therefore, Eq.~17b! is modified in order to ac
count for the moment of inertia of the whole structure with

Fig. 8. Variation of critical spectral velocitySv0 with
spect to the edge pointO1 as shown in Fig. 6. Furthermore, the

JOU
connection of the foundation to the tower is assumed to be m
lithic and, therefore, the normal shape corresponding to the
mode of a cantilever beam, that is Eq.~3!, is used for the ove
turning criterion.

Parametric studies are performed for a hollow cylindr
tower bonded to a slopped foundation~Fig. 6! in order to examin

Table 2. Critical Spectral VelocitysSv0d for Tower Supported by Fou
dation with Variable Diameter

Bsmd l /B

Flexible

Sv0 sm/sd

r2/ l =1/8 r2/ l =1/6 r2/ l =1/4

5 3.28 3.49 4.05

6 3.00 3.23 3.82

7 2.81 3.04 3.66

8 2.66 2.91 3.54

9 2.54 2.80 3.47

12 10 2.45 2.72 3.42

11 2.37 2.66 3.38

12 2.32 2.62 3.37

13 2.27 2.58 3.36

14 2.23 2.56 3.37

15 2.20 2.54 3.39

5 2.40 2.55 2.93

6 2.18 2.34 2.74

7 2.03 2.19 2.61

8 1.91 2.08 2.52

9 1.82 1.99 2.45

6 10 1.74 1.93 2.40

11 1.69 1.88 2.37

12 1.64 1.84 2.34

13 1.60 1.81 2.33

14 1.57 1.78 2.33

15 1.54 1.76 2.33

erness ratiol /B for different values ofr2/ l sB=6 md
slend
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the effect of slenderness on overturning stability. The width o
structure is assigned two different values:B=2r0=6 m and B
=2r0=12 m. Figs. 7 and 8 illustrate the critical spectral velo
for B=12 and 6 m, respectively, as a function of the slender
ratio l /B, while Table 2 lists the resultingSv0 for three represen
tative values of ther2/ l ratio ~Pinfold 1975!. For the tower with
B=6 m, the foundation heighth is 3 m, the top radiusr1 is 3.5 m,
and the bottom radiusr2 varies from 3.75 to 22.5 m. For the tow
with B=12 m, the foundation heighth is 3 m, the top radiusr1 is
6.5 m, and the bottom radiusr2 varies from 7.5 to 45 m. Bot
Figs. 7 and 8 demonstrate the same trend, i.e., the critical sp
velocity decreases with increasing slenderness ratio in an a
linear variation. Furthermore, flexible towers supported by a
row foundation are more vulnerable to overturn due to gro
motion compared to towers on a wider foundation.

Fig. 9. Variation of critical spectral velocitySv0 with

Fig. 10. Variation of critical spectral velocitySv0 wit
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In Figs. 9 and 10, the critical spectral velocitySv0 is plotted
against the foundation heighth for B=12 and 6 m, respectively.
should be noted that for the tower withB=6 m, the heightl is 60
m, based on a slenderness ratio equal to ten, the top radiur1 is
3.5 m, and the bottom radiusr2 varies from 7.5 to 15 m. For th
tower with B=12 m, the heightl is 120 m sl /B=10d, the top
radiusr1 is 6.5 m, and the bottom radiusr2 varies from 15 to 3
m. It is observed thatSv0 increases with increasing foundat
height. In both figures the increase is more apparent for h
values of r2/ l. As it can be seen in Table 3, forB=12 m, the
critical velocity increases from 2.60 to 4.23 m/s forr2/ l =1/4,
which is approximately 63%, while it only increases about 3
for r2/ l =1/8. Similarly, for B=6 m, the increase of the critic
spectral velocity is 68% forr2/ l =1/4 and just 37% for r2/ l
=1/8. It is also worth noting that the relationship between

ation heighth for different values ofr2/ l sB=12 md

dation heighth for different values ofr2/ l sB=6 md
found
h foun
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critical overturning velocity and the foundation height is alm
linear for all ther2/ l ratios examined.

Conclusions

Criteria for the overturning stability of slender structures, suc
chimneys and towers, based on a single mode domination o
dynamic characteristics of the structure are developed. The
turning criteria relate the structural stiffness and inertia pa
eters to the spectral pseudovelocity of the ground motion.

Numerical examples, parametric studies, and compariso
lustrate the significance of either accounting for or ignoring fl
ibility in overturning criteria. The parametric studies lead to
following conclusions: flexibility reduces the magnitude of sp
tral pseudovelocity that causes overturn. This implies that
matingSv0 based on the idealization of the tower as a rigid b
is unconservative. The critical spectral velocity decreases fo
creasing slenderness ratio. Keeping the slenderness ratio co
the critical spectral velocity causing overturning decrease
decreasing geometric size of the tower. Parametric studies
show that the presence of even a very narrow foundation
beneficial effect on the overturning stability of a flexible tow
Furthermore, the vulnerability of the tower decreases by inc
ing either the foundation diameter or the foundation height.

The procedure could also be useful to address the in
problem that is to estimate the ground velocity that caused
overturn of a slender structure.

Notation

The following symbols are used in this paper:
B 5 width of structure;
c 5 viscous damping;
E 5 Young’s modulus;
g 5 acceleration of gravitys9.806 m/s2d;
I 5 second moment of area;

I0
* 5 moment of inertia with respect to base center of

structure;
IO1 5 moment of inertia with respect to corner point of

structure;

Table 3. Critical Spectral VelocitysSv0d for Tower Supported by Fou
dation with Variable Height

B smd h smd

Flexible

Sv0 sm/sd

r2/ l =1/8 r2/ l =1/6 r2/ l =1/4

1 2.12 2.26 2.60

2 2.31 2.52 3.06

12 3 2.48 2.76 3.48

4 2.64 2.99 3.86

5 2.80 3.21 4.23

1 1.50 1.59 1.82

2 1.65 1.79 2.17

6 3 1.79 1.98 2.48

4 1.92 2.17 2.78

5 2.05 2.34 3.06
KE 5 kinetic energy per unit length;

JOU
t,

KE 5 kinetic energy for whole beam;
l 5 beam length;

M 5 total mass of system;
Mb 5 overturning base moment;
m 5 mass per unit length of beam;

qstd 5 generalized coordinate;
R 5 distance between center of gravity and corner

point of structure;
r 5 inner radius of hollow cylindrical tower;

r0 5 outside radius of hollow cylindrical tower;
r1 5 top radius of slopped foundation;
r2 5 bottom radius of slopped foundation;
Sv 5 pseudovelocity spectral response;

Sv0 5 critical overturning velocity;
U 5 strain energy attributed to flexibility;

usy,td 5 relative displacement perpendicular to beam axis
üg 5 ground excitation;
Vb 5 resistant base shear force;
W 5 total weight of structure;
a 5 rotational angle of structure when overturn occur

DKEn 5 incremental change in kinetic energy fornth
impulse;

∆PE 5 total potential energy change;
∆t 5 step changes in time;

6∆v 5 discrete step changes in ground velocity;
u 5 rotational angle;
j 5 damping ratio;

f~y! 5 normal mode shape; and
v 5 natural frequency of the system.
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