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Abstract

A study on the dynamic response of flexible massive strip–foundations embedded in layered soils is presented. The

foundation is treated with a finite element formulation, while the difficulty in modeling the infinite extent of the soil is

overcome by a boundary element formulation. The boundary element method is coupled with the finite element method

by enforcing compatibility and equilibrium conditions at the soil–foundation interface. The accuracy of the proposed

methodology is verified through comparison with results published for rigid foundations. Emphasis is also placed on

parametric studies investigating the effects of salient factors such as foundation flexibility, mass and embedment.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Studies involving dynamic soil–structure interaction

(SSI) are rather complex because of the nonhomogene-

ity, nonlinearity and semi-infinite extent of the soil, as

well as several difficulties in coupling the soil and the

supported structure. The literature is rather extensive on

the topic. A comprehensive review of the literature on

soil–foundation interaction can be found in the papers

by Gazetas [1], Antes and Spyrakos [2] and Spyrakos [3].

With limited analytical or empirical results to follow,

design work in the past has been primarily based on

rules-of-thumb methods. Modern widely accepted

methods on dynamic analysis of foundations have been

initiated by Hsieh [4] and Lysmer [5], and extended by
* Corresponding author. Tel.: +30-210-699-0041/42; fax:

+30-210-699-0044.

E-mail address: spyrakos@hol.gr (C.C. Spyrakos).

0045-7949/$ - see front matter � 2004 Published by Elsevier Ltd.

doi:10.1016/j.compstruc.2004.05.002
Richart and Whitman [6] and Richart et al. [7]. In these

methods, the vibrating massive foundation is repre-

sented by a set of ‘‘mass-spring-dashpots’’ oscillating

with either frequency-dependent or frequency indepen-

dent stiffness and damping coefficients, and the emphasis

is placed on rigid foundations.

Simplified ground models have also been reported in

the literature to obtain the response of either surface or

embedded foundations. Representative are the works of

Nogami and Chen [8], who developed closed form

expressions to calculate the response of partially

embedded rigid foundations, and Yongb et al. [9], who

derived the impedance matrix for the relationship be-

tween displacements and external excitations of a rigid

or flexible foundation embedded in a layered soil med-

ium. Cone frustums have been used by Jaya and Prasad

[10] to obtain the response of an embedded foundation

in layered soil subjected to dynamic excitations. The

significant differences between the response of flexible

and rigid foundations are demonstrated through a ‘rigid

method’ approach in a paper by Gucunski [11]. The
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Fig. 1. Foundation embedded in layered soil.
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vertical and rocking response of rigid foundations on a

compressible nonhomogeneous half-space soil model

has been studied by Vrettos [12] using a semi-analytical

method.

Motivated by the need to examine the phenomena of

soil–foundation interaction including foundation flexi-

bility, nonhomogeneity and nonlinearity of soil, layered

soil deposits, and possible partial separation between the

foundation and the soil, more involved methods have

been developed in the last three decades. The finite ele-

ment method (FEM) has been one of the most widely

used methods to solve soil–structure interaction prob-

lems. Its versatility as well as its shortcomings in ana-

lyzing media of infinite extent is well documented, e.g.

Spyrakos [13]. Energy absorbing boundaries, such as

transmitting boundaries, have also been used in FEM to

overcome the problem of wave reflection and radiation

on the boundaries of the soil domain (Murakami et al.

[14], Kausel and Tassoulas [15], Day and Frazier [16],

Basu and Chopra [17], Kim and Yun [18] and Zerfa and

Loret [19]). As stated in the pioneering works of Ku-

hlemeyer [20], Kausel [21] and Lysmer et al. [22], the

difficulty in applying FEM lies in selecting the proper

transmitting boundaries. Use of half-space Green’s

functions for the soil medium coupled with the finite

element method are one technique to avoid use of

transmitting boundaries, e.g., the work of Bode at al.

[23].

As an alternative method to FEM, the boundary

element method (BEM), e.g., Wolf [24] and Ahmad and

Rupani [25], as well as a combination of the FEM–

BEM, the so-called hybrid FEM–BEM have also been

used in SSI in the last two decades. In the FEM–BEM

method, the FEM is utilized to model the foundation,

and the BEM is employed to model the soil domain

since it satisfies automatically the ‘‘far-field’’ boundary

conditions associated with the semi-infinite soil domain;

thus, eliminating the use of transmitting boundaries.

Another advantage of BEM over the FEM is that it

reduces the dimensions of the problem by one, and thus

saves substantial modeling and processing time. The

BEM has been applied to determine the response of both

rigid and flexible foundations subjected to either static

or dynamic loads. The response of embedded rigid and

flexible foundations on an elastic half-space subjected to

dynamic loads has been reported by Spyrakos and

Beskos [26,27] and by Kokkinos and Spyrakos [28]. A

comprehensive discussion on this topic is given by

Spyrakos [13] for dynamic loads and seismic excitations.

Analysis of rigid foundations on an elastic half-space

allowed simultaneously to uplift and slide under seismic

excitations has been performed by Patel and Spyrakos

[29]. The behavior of rigid-massless foundations

embedded in layered soils subjected to dynamic loads

was studied by Ismail and Ahmad [30] and Ahmad and

Bharadwaj [31]. The FEM–BEM has been employed by
Yazdchi et al. [32] to study the response of dam–foun-

dation interaction for seismic loads including the effects

of pre-seismic loads such as water pressure and self-

weight of the dam. A FEM–BEM formulation has also

been used by Kim et al. [33,34] to study the response of a

surface foundation and underground structures on

multi-layered soil media subjected to incident wave

excitations. It should be pointed out that the literature is

rather extensive on the subject and only representative

works are reported in this introduction.

In this work, the methodology of Kokkinos and

Spyrakos [28] on massive surface flexible strip–founda-

tions on an elastic half-space has been extended to study

the response of massive flexible foundations embedded

in layered soils subjected to externally applied loads. The

effects of foundation flexibility and mass on the dynamic

response are investigated in conjunction with the depth

of embedment and soil layering.
2. Formulation and numerical treatment

The system consists of a flexible strip–foundation

embedded in layered soil (see Fig. 1). The soil–structure

interface is indicated as ‘‘c’’ and the top soil layer

boundaries as ‘‘e’’, ‘‘c’’ and ‘‘1’’, respectively. The

boundary ‘‘e’’ is the free surface and the boundary ‘‘1’’ is

the contact interface with the soil layer [2]. The bottom

layer has only the top boundary ‘‘n� 1’’, since the

bottom boundary ‘‘n’’ is extended to infinity. In general,

a layer [k] has a top boundary ‘‘k � 1’’ and a bottom

boundary ‘‘k’’, where ‘‘k � 1’’ is the interface between

layers [k � 1] and [k].
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3. BEM formulation for the soil

It is assumed that the soil layers are homogeneous,

isotropic, and linear elastic and the displacements and

strains are small. Under these assumptions, the gov-

erning equation for the soil is the well known Navier’s

equation. Expressed in terms of the transformed dis-

placements in the frequency domain, Navier’s equation

is given by

ðc2
1 � c2

2ÞUi;ij þ c2
2Uj;ii � k2Uj ¼ 0 ð1Þ

where k ¼ ix, x is the circular frequency of the applied

load, and c1, c2 are the P- and S-wave velocities,

respectively. The c1 and c2 are given by

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esð1 � msÞð1 þ 2niÞ
qsð1 þ msÞð1 � 2msÞ

s

c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esð1 þ 2niÞ
2qsð1 þ msÞ

s ð2Þ

in which Es, qs, vs are the modulus of elasticity, mass

density, and Poisson’s ratio, respectively, and n is

introduced to include the effect of hysteretic damping

[24]. In the frequency domain, the boundary conditions

are expressed as

Uið~x; kÞ ¼ Fið~x; kÞ ~x 2 C1

Tið~x; kÞ ¼ Gið~x; kÞ ~x 2 C2

ð3Þ

where F ð~x; kÞ and Gð~x; kÞ are known displacements and

tractions at the boundaries C1 and C2.

In this study, the BEM is used to numerically solve

the boundary value problem defined by Eqs. (1)–(3). The

starting point is the application of the reciprocal theo-

rem, that is

1

2
dijUið~n; kÞ þ

Z
C
T �
ijUjdC ¼

Z
C
U �

ijTjdC ð4Þ

where U �
ij, T �

ij are the fundamental solutions. Under

plane strain, the expressions of U �
ij, T

�
ij for a 2-D problem

are given by Cruse and Rizzo [35], Spyrakos [13]
U �
ijð~n;~x; kÞ ¼

1

2pqc2
2

ðwdij � vr;ir;jÞ
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where

w ¼ K0

kr
c2

� �
þ c2

kr
K1

kr
c2

� ��
� c2

c1

K1

kr
c1

� ��
v ¼ K2

kr
c2

� �
� c2

2

c2
1

K2

kr
c1

� � ð6Þ

in which K0;K1, and K2 are modified Bessel functions of

the second kind and order 0, 1, and 2, respectively, the

vector x is the coordinate vector of any interested point in

the domain and the vector n is the acting position of the

Dirac’s delta function, r is the distance between vectors x
and n, and n is the outward normal direction [36].

The numerical solution of Eq. (4) requires discreti-

zation of the soil layers and soil–foundation interfaces.

The boundary of a typical layer is divided into N
boundary elements (l ¼ 1; 2; . . . ;N ). Using constant

boundary elements and applying Dirac’s delta function

successively to the element nodes, one obtains a set of

2 � N linear equations that relate the displacements to

tractions, that is

½H 
fU sg ¼ ½G
fT sg ð7Þ

where ½H 
 and ½G
 are 2N � 2N matrices that correspond

to the fundamental solutions fU �g and fT �g of Eq. (5),

fU sg and fT sg are the nodal displacement and traction

vectors, respectively. A detailed description of the

methodology can be found in Dominguez [36].

Replacing the traction vector fT sg in Eq. (7) by the

nodal force vector, and after some matrix manipula-

tions, the equilibrium equation in nodal quantities can

be cast into the following form [37]:

½Ks
fU sg ¼ fF sg ð8Þ

where

½Ks
 ¼ ½L
½G
�1½H 
 ð9Þ
fF sg ¼ ½L
fT sg ð10Þ

in which

½L
 ¼ diagfl1l1 l2l2 
 
 
 lN lNg ð11Þ

where li is the length of the i-th element.
4. FEM formulation for the strip–foundation

The thickness of the foundation is small compared to

the other dimensions of the foundation and thus justi-

fying the use of thin plate elements to model the foun-

dation. Specifically, the Mindlin–Kirkorff plate theory is

utilized in the FEM formulation for the strip–foundation

[38,39]. This theory allows uncoupling of the governing

equations for bending and axial deformations. For a

plane strain problem, the equations in the frequency

domain are reduced to the so-called Bernoulli–Euler
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beam problem. For bending deformation, the Bernoulli–

Euler beam problem can be expressed as

d4 eUy

dy4
� k4

2
eUy ¼ 0 ð12Þ

Similarly, for axial deformation

d2 eUx

dx2
þ k2

1
eUx ¼ 0 ð13Þ

where

k2
1 ¼

qfx
2

E� ð14Þ

and:

k4
2 ¼

qfhx
2

Df

ð15Þ

in which Df is the flexural rigidity of the plate defined by

Df ¼
Efh3

12ð1 � m2
f Þ

ð16Þ

where h is the thickness of the plate, and qf , Ef , vf are the

modulus of elasticity, mass density, and Poisson’s ratio,

respectively. Notice that the bending stiffness EI and the

unit mass per length m in the classic Bernoulli–Euler

beam theory for bending are replaced by Df and qfh,

respectively, and the modulus of elasticity E for axial

deformation is replaced by E� ¼ Ef=ð1 � v2
f Þ.

Following standard FEM procedures, the strip–

foundation is divided into M elements and the equilib-

rium equation relating nodal forces to displacements in

the frequency domain can be written in the form [40,41]

Duu Duh

Dhu Dhh

� �
U f

h

	 

¼ F f

M

	 

ð17Þ

where the subscripts u and h refer to nodal displace-

ments and rotations, respectively. The expressions for

the stiffness coefficients in Eq. (17) can be found in Ref.

[42]. Through condensation of the rotational degrees-of-

freedom, Eq. (17) can be rewritten in the following

concise form:

fF fg ¼ ½K f 
fU fg ð18Þ
½K
 ¼

K0
ee K0

ec K0
e1

K0
ce Ks

cc þ K0
cc K0

c1
K0

1e K0
1c K0

11 þ K1
11 K1

12

K1
21 �

� Ki�1
i�1;i

Ki�1
i;i�1 Ki�1

i;i þ Ki
i;i K

Ki
iþ1;i

�������������������
where

½K f 
 ¼ ½Duu
 � ½Duh
½Dhh
�1½Dhu
 ð19Þ
5. Coupling of BEM with FEM

The equilibrium equations for each sub-structure,

i.e., the foundation and the soil layers, have been

established. The system equation can now be obtained

by satisfying compatibility and equilibrium conditions at

the contact areas. At the interfaces, the sub-structures

have equal displacements, and the forces from each sub-

structure sum up to the total externally applied loads.

Expressed in a vector form, they are

fU s
eg ¼ fUeg

fU s
cg ¼ fU f

cg ¼ fUcg
fU s

i g ¼ fU s
i�1g ¼ fUig

ð20Þ

and

fF s
e g ¼ f0g

fF s
c g þ fF f

c g ¼ fFcg
fF s

i1g þ fF s
i g ¼ f0g

ð21Þ

where the displacement vectors without superscript

indicate the common displacements at the interfaces,

while ‘‘f ’’ and ‘‘s’’ indicate structure and soil interfaces,

respectively. The subscripts refer to the interfaces be-

tween the layers shown in Fig. 1.

Combining the equilibrium equations for each sub-

structure, and employing the compatibility conditions at

the interfaces, the equilibrium equation for the system is

obtained [37]

½K
fUg ¼ fF g ð22Þ

where

fUg ¼ fUe Uc U1 
 
 Ui 
 
 Un�1gT ð23Þ
fF g ¼ f0 Fc 0 
 
 0 
 
 0gT ð24Þ

and
i
i;iþ1

�
� Kn�1

n�2;n�1

Kn�1
n�1;n�2 Kn

n�1;n�1

�������������������

ð25Þ



Fig. 3. Comparison for vertical response.

Fig. 4. Comparison for horizontal response.
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6. Validation of the methodology

In order to eliminate the dependence of the results on

the shear modulus of the soil and the amplitude of the

load, the results are presented in a normalized from and

are referred as normalized dynamic compliance. For

example, the vertical normalized dynamic compliance of

a foundation is expressed as:

�f ¼ G1u
P

¼ Re½�f 
 þ Im½�f 
 ð26Þ

where G1 is the shear modulus of the top soil layer, u is

the displacement and P the amplitude of the external

vertical load. The dynamic compliance is plotted against

the dimensionless frequency A0 ¼ xB=c2, where c2 is the

shear wave velocity of the top soil layer, x is the fre-

quency of the external load and B is half width of the

foundation.

Since to the authors’ knowledge, this is the first study

of massive flexible strip–foundations on layered soils,

comparisons were only possible for the limited case of

rigid foundations that have been studied by other

researchers, e.g., Gazetas [1] and Ahmad and Bharadwaj

[31]. Two cases are investigated: In the first case, the

results of a surface foundation on layered soil subjected

to vertical loads are compared to those of Ismail and

Ahmad [30]. The foundation is placed on a soil stratum

laying over a half-space bedrock, see Fig. 2. The soil

parameters are: Poisson’s ratio vs ¼ 0:33, damping ratio

ns ¼ 5%, modulus of elasticity Es ¼ 100 MPa and mass

density qs ¼ 2000 kg/m3. The ratio of thickness of the

soil stratum, H, to half width of the foundation, B, is

H=B ¼ 2. The material properties of the foundation are

selected so that the foundation behaves almost like a

rigid-massless foundation which is the case in the work

of Ismail and Ahmad, that is, modulus of elasticity

Ef ¼ 3 � 107 MPa, mass density qf ¼ 0, Poisson’s ratio

vf ¼ 0:3 and damping ratio nf ¼ 5%. The vertical nor-

malized real (Re) and imaginary (Im) parts of the dy-

namic compliance in Fig. 3 show an excellent agreement

between the two works. In the second case, the absolute

normalized dynamic compliance for a surface founda-

tion subjected to a horizontal load is compared to the
Fig. 2. Dimensions of the soil–foundation system.
results given by Gazetas [1], see Fig. 4. The relatively

small differences can be attributed to the fact that

Gazetas’ results have been reproduced from a graph

provided in his paper.

In the BEM formulation using fundamental solutions

for the infinite soil domain, two factors are of great

importance in providing accurate results efficiently. The

lengths of truncation distances along the boundaries L
and the boundary element size li, see Fig. 2. The longer

the truncation distances and the finer the discretization

along the boundaries, the higher the solution accuracy,

but the longer the computational time. Convergence

studies for rigid foundations have been carried out by

several researchers, e.g. Ahmad and Bharadwaj [31]. A

transient fundamental solution that, combined with fi-

nite elements, solves transient half-space problems

without discretization of the free surface has been

developed by Guan et al. [43]. To select optimum trun-

cation distances and discretization at the boundaries
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that maintain balance between accuracy and efficiency

for flexible foundations, a series of convergence studies

have been conducted by Xu [37], who has developed

guidelines for computational efficiency and accuracy.

Two significant recommendations extracted from Ref.

[37] include: For vertical loads, a mesh with a truncation

distance of twice the length of the surface standing wave

from the edge of the foundation and a element length of

one-tenth of the length of the surface standing wave

provides good accuracy. Whereas for horizontal loads,

the truncation distance must be doubled while keeping

the same number of boundary elements in order to ob-

tain accurate results efficiently.
Fig. 5. Effect of foundation stiffness for surface foundation to

vertical loads.
7. Numerical results and discussions

The soil–structure system consists of a foundation

with a width of 2B embedded in a soil layer with a depth

H over a half-space bedrock, see Fig. 2. The depth of the

embedment is D and the ratio of foundation width to

thickness of the soil layer is H=B ¼ 2. Through out this

study, the material properties of the soil are: modulus of

elasticity Es ¼ 100 MPa, mass density qs ¼ 2000 Kg/m3,

Poisson’s ratio vs ¼ 0:33 and damping ratio ns ¼ 0:05.

The Poisson’s ratios vf ¼ 0:3 and damping ratio

nf ¼ 0:05 are selected for the foundation. Two nondi-

mensional parameters that characterize the soil–foun-

dation system are introduced, they are: the relative

stiffness Kr and relative mass density Mr, respectively, as

defined in the paper by Kokkinos and Spyrakos [28]:

Kr ¼
Efh3

1 � m2
f

� 1 þ ms

EsB3

Mr ¼
qf

qs

ð27Þ

As elaborated by Kokinnos and Spyrakos [28], values of

Kr 500, 5, 0.05 correspond to rigid, intermediate, and

very soft foundations, respectively.
Fig. 6. Effect of foundation stiffness for surface foundation to

horizontal loads.
8. Effects of foundation flexibility

First, the effect of foundation flexibility on surface

foundations is evaluated. Four relative stiffnesses,

Kr ¼ 450, 4.5, 0.45, 0.045 and a relative mass density

Mr ¼ 1:25 are considered for the vertical loads. For

horizontal loads, the Kr values are: 45, 0.45, 0.045 and

0.0045 with Mr ¼ 0. By selecting zero and nonzero val-

ues for Mr, the effect of foundation flexibility on both

massless and massive foundations can be evaluated. The

reason that smaller values of Kr are selected for hori-

zontal loads is that the foundation behaves as rigid at a

low relative stiffness as demonstrated in the results that

follow. For both the vertical and the horizontal cases,
the foundation with the largest and the smallest stiffness

correspond to rigid and very soft foundations, respec-

tively. Whereas the other two stiffness values correspond

to flexible foundations.

The normalized dynamic compliances at the center of

the foundation are plotted versus the nondimensional

frequency A0 in Figs. 5 and 6 for the vertical and hori-

zontal loads applied at the center, respectively. These

two figures clearly demonstrate that the effects of

foundation flexibility are significant. For most of the

frequency range studied, the general trend is that the

smaller the relative stiffness, the larger the displacement.

Also, the real part of the compliance is shifted uniformly

upward, while the imaginary part of the compliance is

shifted uniformly downward. This trend is similar for

massless and massive foundations. Comparison between



Fig. 8. Effect of foundation stiffness for embedded foundation

to horizontal loads.
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Figs. 5 and 6 shows that the shift for vertical loads is

larger than that for horizontal loads. Specifically, for a

very soft foundation subjected to a vertical load, the

compliance shows a shift of 150% from that of a rigid

foundation at low frequency. However, for a very soft

foundation under a horizontal load the shift is only 30%

from the compliance of the rigid foundation at low

frequency. Notice that the real part of the compliance is

mostly affected, as it physically represents the stiffness of

the soil–foundation system. The change of the imaginary

part, expressing damping in the system, is less affected.

Also notice that the natural frequencies of the system in

horizontal motion are smaller than the ones in vertical

motion. In fact, the fundamental frequency in Fig. 6 is

about half the fundamental frequency in Fig. 5. It

should be pointed out that in Fig. 6, the practical range

of interest extends from 3· 105 MPa ðKr ¼ 4:5Þ to

3· 104 MPa ðKr ¼ 0:45Þ corresponding to steel and

concrete foundations, respectively. For horizontal loads,

the foundation stiffness depends mainly on the axial

stiffness. As a result, the foundation becomes rigid at a

relatively low value of the modulus of elasticity (see Fig.

6), i.e., 3 · 104 MPa, which is practically the modulus of

elasticity of concrete. Whereas for vertical loads, the

foundation still cannot be considered as rigid (see Fig. 6)

for Ef ¼ 3 � 105 MPa, that corresponds to steel. These

observations are of great importance in reassessing the

validity of current practice, which as a norm ignores the

effect of relative stiffness between the foundation and

soil and considers the foundations either as rigid or very

flexible.

The effect of foundation flexibility for embedded

foundations is evaluated next. The ratio of embedment

to half width of the foundation is D=B ¼ 1. Three

foundations with Mr ¼ 0 and relative stiffness values,

Kr ¼ 45, 0.45, 0.0045, which could be defined as stiff,
Fig. 7. Effect of foundation stiffness for embedded foundation

to vertical loads.
soft, and very soft are considered. The normalized dy-

namic compliances of the foundation subjected to ver-

tical and horizontal loads are plotted in Figs. 7 and 8,

respectively. Figs. 7 and 8 clearly demonstrate that the

effects of foundation flexibility are significant for

embedded foundations. Increase of foundation stiffness

has a similar effect on the dynamic response of embed-

ded foundations to that of surface foundations. As for

surface foundations, the horizontal motion has a lower

natural frequency than the vertical motion. However,

the compliance is no longer uniformly shifted upward or

downward as in the case of surface foundations. Com-

parisons between Figs. 5 and 7 as well as Figs. 6 and 8

show that the relative stiffness plays a greater role on

modifying the response of embedded rather than surface

foundations.
9. Effects of foundation mass

The effects of foundation mass on the response of

surface foundations are investigated first. In evaluating

the effects of foundation mass, the modulus of elasticity

of the foundation is kept constant, while its mass density

is varied. The relative foundation stiffness for the verti-

cal load Kr ¼ 4:5 corresponds to an intermediate foun-

dation stiffness. For the horizontal load, the selected

Kr ¼ 45 represents a stiff foundation. Such selections of

relative stiffness allow an assessment of the effects of

foundation mass on both stiff and flexible foundation

considered, i.e., Mf ¼ 0, 1.25, 2.5, and 3.75.

Figs. 9 and 10 show the normalized dynamic com-

pliances for the vertical and horizontal response at the

center of the foundation subjected to vertical and hori-

zontal loads, respectively. From Figs. 9 and 10 one may

observe that by increasing the mass density of the

foundation the natural frequency of the system



Fig. 9. Effect of foundation mass for surface foundation to

vertical loads.

Fig. 10. Effect of foundation mass for surface foundation to

horizontal loads.

Fig. 11. Effect of foundation mass for embedded foundation to

vertical loads.

Fig. 12. Effect of foundation mass for embedded foundation to

horizontal loads.
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decreases. Also for frequencies close to the fundamental

frequency of the soil–structure system, the greater the

mass density, the larger is the corresponding displace-

ment. However, foundation mass has a smaller effect on

the response compared to that of foundation flexibility.

Specifically, the difference in displacements between

massive and massless foundation is within 20%. For

frequencies away from the fundamental frequency, the

influence of the relative mass density on the response is

rather small. This trend is more distinct for vertical

loads as depicted in Fig. 9.

For embedded foundations, the mass density has

been varied for a relative stiffness of Kr ¼ 45. The re-

sponse of the system is obtained for four relative mass

densities: Mr ¼ 0, 1.25, 2.5, and 3.75. The normalized

dynamic compliances for vertical and horizontal loads

are drawn in Figs. 11 and 12, respectively. As can be
observed in Figs. 11 and 12, no elaboration on the effects

of embedment on the response is necessary, since they

are identical to the ones made for surface foundations.
10. Effects of embedment

To investigate the effects of embedment, the foun-

dation response for two different embedments, i.e.,

D1 ¼ 2 m and D2 ¼ 4 m is compared with the response

for a surface foundation. In both cases, the foundations

are massless with a relative stiffness of Kr ¼ 45. The

normalized dynamic compliances at the center of the

foundation are shown in Figs. 13 and 14 for vertical and

horizontal loads, respectively.

As can be observed in Figs. 13 and 14, the funda-

mental frequencies of the embedded foundation are de-



Fig. 13. Effect of foundation embedment for vertical loads.

Fig. 14. Effect of foundation embedment for horizontal loads.
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creased as compared to the surface foundation. This

indicates that the effect of the additional inertia added

from the embedment has more than counterbalanced the

additional stiffness provided by the sidewalls of the

foundation. Also, increasing the embedment depth of

the foundation greatly reduces the displacement of the

system. Notice that for a foundation with an embedment

depth of 2 m, the displacement close to resonance is only

60% to that of a surface foundation. However, for an

embedded foundation with an embedment depth of 4 m,

the displacement close to resonance is only 40% to that

of a surface foundation.
11. Conclusions

A numerical method has been presented for the dy-

namic analysis of massive flexible strip–foundations
embedded in layered soils. The solution is based on a

coupled BEM–FEM formulation where the FEM is

employed to include the foundation flexibility and the

BEM is used to overcome computational difficulties

arising from the infinite extent of the soil. Recommen-

dations for optimum truncation distances and element

sizes are provided on the basis of convergence studies.

The accuracy of the method is established through

comparisons with published results on rigid founda-

tions.

Parametric studies are conducted to investigate the

effects of foundation-soil flexibility and mass as well as

foundation embedment on the response. Foundation

flexibility plays an important role on the dynamic re-

sponse of foundations, especially for foundations sub-

jected to vertical loads. For very soft foundations

displacements can be tripled to that of rigid foundations.

The displacements for moderately flexible foundations

can be twice as large as those of rigid foundations at the

low frequency range, i.e., frequencies of less than 10 cps.

The studies show that because of the beneficial contri-

bution of sidewalls, the displacement for embedded

foundations is greatly reduced. The displacements are

only 40% and 60% of that of the surface foundation for

embedded foundations with an embedment of D ¼ 2 m

and D ¼ 4 m, respectively.
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