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Abstract

A study on the seismic response of massive flexible strip-foundations embedded in layered soils and subjected to seismic excitation is

presented. Emphasis is placed on the investigation of the system response with the aid of a boundary element–finite element formulation

proper for the treatment of such soil–structure interaction problems. In the formulation, the boundary element method (BEM) is employed to

overcome the difficulties that arise from modeling the infinite soil domain, and the finite element method (FEM) is applied to model the

embedded massive flexible strip-foundation. The numerical solution for the soil–foundation system is obtained by coupling the FEM with

the BEM through compatibility and equilibrium conditions at the soil–foundation and soil layer interfaces. A parametric study is conducted

to investigate the effects of foundation stiffness and embedment on the seismic response.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During the last decades, several methods have been

developed to consider the effects of soil–structure inter-

action (SSI) on the response of structures subjected to

seismic waves [1,2].

Extensive research has been conducted on analytical or

semi-analytical methods. However, the application of such

methods is very limited since solutions are only available

for systems with simple geometry. With the help of modern

computer technology, numerical methods have been devel-

oped to treat complexities involving SSI, [3]. In applying

the finite element method (FEM) to SSI analysis, however,

special boundaries, such as transmitting boundaries, have

been devised to overcome the difficulties in modeling the

semi-infinite soil domain, [4]. A hybrid formulation has

been developed by Romanel and Kundu [5] to study the

response of deeply embedded structures in a multilayered

half space for P and SV waves.

An alternative approach is the hybrid finite element–

boundary element method (FEM–BEM). In this method,

the FEM is utilized to model the foundation and the ‘near-

field’ of the soil, and the BEM is employed to model

the ‘far-field’ of the soil domain since it automatically

satisfies the ‘far-field’ boundary conditions associated with

the semi-infinite soil domain [6]. Another advantage of this

method over the FEM is that it reduces the dimensions of the

problem by one, and thus saves modeling and processing

time.

A generally adopted methodology that considers SSI in

seismic analysis consists of three steps. First, the seismic

waves in the free field prior to any excavation of the soil

portion are determined based on wave propagation theory.

Then, the so-called scatter field motion with the soil

portion excavated that lies on the interface between ‘near-

field’ and ‘far-field’ interface, usually the soil–structure

contact interface, is computed from the free-field seismic

waves. Finally the seismic response of the structure is

obtained using the scatter motion [6]. Because of the

complexity of the problem, most of the studies regarding

the SSI of soil–foundation systems subjected to seismic

excitation have been limited to foundations on homo-

geneous viscoelastic half-space. Representative are the

works of Wolf [7] and Avilez and Perez-Rocha [8] who

have studied the case of rigid rectangular foundations
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while Whittaker and Christiano [9] considered flexible

rectangular foundations. Formulations for rigid strip-

foundations have been presented by Abascal and Dom-

inguez [10], Spyrakos and Beskos [11], and the response

of surface flexible strip-foundations on a homogeneous

half-space has been investigated by Spyrakos and Beskos

[12], and Kokkinos and Spyrakos [13].

To perform a SSI analysis of flexible strip-foundations

embedded in layered soils subjected to seismic excitations, a

hybrid BEM–FEM formulation is presented. The seismic

excitations are prescribed at the bedrock-soil interface. In

the hybrid BEM–FEM formulation, the flexible foundation

is modeled with finite elements, while the infinitely

extended soil is modeled with boundary elements. The

governing equation is derived by enforcing compatibility

and equilibrium conditions at the soil–foundation and soil

layers interface. A series of convergence studies are

conducted to obtain the optimum meshes of the boundary

discretization. The seismic response of foundations sub-

jected to P-waves and S-waves is investigated. Numerical

examples are presented to assess the effects of foundation

stiffness and embedment on the seismic response of the

soil–foundation system.

2. Formulation and numerical treatment

The system consists of a flexible strip-foundation

embedded in layered soil (see Fig. 1). The soil–structure

interface is indicated by ‘c’, and the top soil layer

boundaries as ‘e’, ‘c‘, and ‘l’. The boundary ‘e’ is the

free surface and the boundary ‘1’ is the contact interface

with the soil layer [2]. The bottom layer has a top

boundary n 2 1 which is the contact interface with layer

½n 2 1� and a bottom boundary n which is the interface

with the bedrock. In general, a layer ½k� has a top

boundary k 2 1 and a bottom boundary k; where k 2 1

and a bottom boundary k; where k 2 l is the interface

between layers ½k 2 l� and ½k�:

2.1. BEM formulation for the soil

Assuming small displacements and soil layers that are

homogeneous, isotropic, and linearly elastic, the governing

equations for each layer are the Navier’s equations.

Expressed in terms of displacements in the frequency

domain, Navier’s equation is given by

ðc2
1 2 c2

2ÞUi;ij þ c2
2Uj;ii 2 k2Uj ¼ 0 ð1Þ

where k ¼ iv; v is the circular frequency of the seismic

excitation, and

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esð1 2 nsÞð1 2 2jiÞ

rsð1 þ nsÞð1 2 2nsÞ

s
ð2Þ

c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esð1 þ 2jiÞ

2rsð1 þ nsÞ

s

are P- and S-wave velocities, respectively. In Eq. (2), Es; rs

and ns are the modulus of elasticity, the mass density and the

Poisson’s ratio, respectively, and j is introduced to include

the effect of hysteretic damping [6].

The corresponding boundary conditions to Eq. (1) are

Uið~x; kÞ ¼ Fið~x; kÞ ~x [ G1

ð3Þ

Tið~x; kÞ ¼ Gið~x; kÞ ~x [ G2

where Fið~x; kÞ and Gið~x; kÞ are known displacements and

tractions on the boundaries G1 and G2:

Eq. (1) together with the boundary conditions (3) is

numerically solved using BEM.

The numerical solution requires discretization of the soil

layers and soil– foundation interfaces. As extensively

elaborated in Ref. [14], the boundary of a typical layer is

divided into N boundary elements ðl ¼ 1; 2;…;NÞ: Using

constant boundary elements and applying Dirac’s delta

function successively to the element nodes, one obtains a set

of 2 £ N linear equations that relate the displacements to

tractions, that is

½H�{Us} ¼ ½G�{T s} ð4Þ

where ½H� and ½G� are 2N £ 2N matrices that correspond to

the fundamental solutions as elaborated in Refs. [14,15],

{Us} and {T s} are the nodal displacement and traction

vectors, respectively. A detailed description of the method-

ology can be found in Xu [14] and Dominguez [15].

In order to obtain the equilibrium equation of the soil–

foundation system, the tractions {Ts} in Eq. (4) must be

expressed in terms of the nodal forces {Fs}: The matrixFig. 1. Foundation embedded in layered soil.
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manipulations to derive Eq. (5) are presented in detail in

Ref. [14].

½Ks�{Us} ¼ {Fs} ð5Þ

where

½Ks� ¼ ½L�½G�21½H� ð6Þ

{Fs} ¼ ½L�{T s} ð7Þ

in which

½L� ¼ diag{l1l1l2l2†††lNlN} ð8Þ

where li is the length of the ith boundary element.

2.2. FEM formulation for the strip-foundation

The thickness h of the foundation is small compared to

the other dimensions of the foundation. which justifies the

use of thin plate elements to model the foundation. The

Mindlin-Kirkorff plate theory is utilized in the FEM

formulation for the strip-foundation [16]. According to

this theory, the governing equations for bending and axial

deformation are uncoupled.

Following standard FEM procedures, the strip-foun-

dation is divided into M elements and the equilibrium

equation relating nodal forces to displacements can be

written in the form [17,18]

Duu Duu

Duu Duu

" #
Uf

u

( )
¼

Ff

M

( )
ð9Þ

where the subscripts u and u refer to the nodal displacements

and rotations, respectively. The stiffness coefficients in Eq.

(9) can be found in Ref. [17]. Through condensation of the

rotational degrees-of-freedom, Eq. (9) can be rewritten in

the following form [14]

{Ff} ¼ ½Kf�{Uf} ð10Þ

where

½Kf� ¼ ½Duu�2 ½Duu�½Duu�
21½Duu� ð11Þ

3. Coupling of BEM with FEM

The system equation can be obtained by enforcing

compatibility and equilibrium conditions at the soil–

foundation and soil layer interfaces. Specifically, at the

interfaces, the displacements of each sub-structure are the

same, that is

{Us
e} ¼ {Ue}

{Us
c} ¼ {Uf

c} ¼ {Uc} ð12Þ

{Us
i } ¼ {Us

i2l} ¼ {Ui}

{Us
n} ¼ {Ug}

in the absence of external forces, the forces acting on each

substructure sum up to zero, that is

{Fs
e} ¼ {0}

{Fs
c} þ {Ff

c} ¼ {0}

{Fs
il} þ {Fs

i } ¼ {0}

ð13Þ

where the displacement vectors without superscript indicate

the common displacement at the interfaces, while ‘f’ and ‘s’

indicate structure and soil interfaces, respectively, and Ug

represents the seismic excitation prescribed at the bedrock

interface. Subscripts denote the interfaces of the soil layers

as shown in Fig. 1.

Combining the equilibrium equations for each substruc-

ture, and employing the compatibility conditions at the

interfaces, the equilibrium equation for the system is

obtained [14,15] where

½K�{U} ¼ {F} ð14Þ

4. Numerical examples

In the following discussion and numerical examples, the

seismic excitations are prescribed at the bedrock interface.

Two different harmonic excitations are considered: the first

one is a P-wave with only a unit vertical component normal

to the bedrock interface, and the second one is a S-wave

with only a unit horizontal component along the bedrock

interface. As shown in Fig. 2, the system consists of a

foundation with a width 2B ¼ 4 m embedded in a soil layer

with a depth H over a half-space bedrock. The depth of the

embedment is D and the ratio of foundation width to

thickness of the soil layer if H=B ¼ 2: The material

properties of the soil are: modulus of elasticity Es ¼ 100 �

MPa; mass density rs ¼ 2000 kg=m3; Poisson’s ratio ns ¼

0:33; and damping ratio js ¼ 0:05: The material properties

of the foundation are: mass density rf ¼ 2500 kg=m3;

Poisson’s ratio nf ¼ 0:3; and damping ratio jf ¼ 0:05:

Fig. 2. Dimensions of soil–foundation system.
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4.1. Effect of foundation stiffness

According to the paper by Kokkinos and Spyrakos [13],

the relative stiffness Kr and mass density Mr for a

foundation–soil system are defined as

Kr ¼
Efh

3

1 2 v2
f

£
1 þ ns

EsB
3

ð15Þ

Mr ¼
rf

rs

ð16Þ

Foundations with relative stiffness of 500, 5, 0.05

correspond to rigid, intermediate, and very flexible

foundations, respectively [13]. To evaluate the effect of

foundation stiffness on the response, two foundation–soil

systems with relative stiffness 45 and 0.045 are considered.

The corresponding moduli of elasticity for the foundations

are Ef ¼ 106 MPa and Ef ¼ 103 MPa yielding Kr ¼ 45; a

stiff foundation, and Kr ¼ 0:045; a soft foundation,

respectively.

In all the numerical examples, the results are presented in

relative displacement, Ur; that is

Ur ¼
U

Ug

ð17Þ

where U is the displacement response at free surface, with

respect to the nondimensionless frequency A0; that is

defined by

A0 ¼
Bv

c2

ð18Þ

where v is the circular frequency of the harmonic

excitation.

For the stiff foundation, the relative vertical displace-

ments along the top surface from the foundation center for

harmonic P-waves are shown in Fig. 3. Fig. 4 depicts the

relative horizontal displacements along the top surface from

the foundation center for S-waves. Results for the vertical

displacements can be found in Ref. [14]. As elaborated in

Ref. [14], the relative displacements for the soft foundation

remain practically constant along the top free surface.

Specifically, for a P-wave, the horizontal displacement is

negligible and the vertical displacement remains uniform at

the top free surface, while for a S-wave, the vertical

displacement is negligible and the horizontal displacement

remains constant. The relative vertical displacements at the

foundation center for both soft and stiff foundations

subjected to P-waves are plotted in Fig. 5 and those for

S-waves are drawn in Fig. 6

Figs. 5 and 6 clearly indicate that the main difference of

the top free surface displacement for the seismic excitation

at the bedrock interface is that the amplitude is amplified for

the soft foundations. However, as demonstrated in Figs. 3

and 4, the stiff foundation greatly modifies the propagation

pattern of the wave away from the center of the foundation.

Though at a low excitation frequency range, e.g. A0 ¼ 0:5; a

frequency lower than the fundamental frequency (see Figs. 5

Fig. 3. Vertical displacement at top surface for stiff foundation to P-waves.

Fig. 4. Horizontal displacement at top surface for stiff foundation to S-

waves.

Fig. 5. Effects of foundation stiffness for surface foundation to P-waves.

C.C. Spyrakos, C. Xu / Soil Dynamics and Earthquake Engineering 23 (2003) 383–389386



and 6), the modification is not significant, at frequencies

higher than the fundamental, e.g. A0 ¼ 2; the wave pattern is

altered. As can be observed in Figs. 3 and 4, the vertical

displacement amplitude for the foundation subjected to a

P-wave and the horizontal displacement amplitude for the

foundation subjected to a S-wave are no longer constant at

the top free surface and a standing wave caused by SSI

develops at the top free surface. Also, the horizontal

displacement for the P-wave excitation and the vertical

displacement component for the S-wave are no longer

negligible compared to the corresponding vertical and

horizontal components, respectively [14].

A detailed discussion and parametric studies on the

behavior of surface foundations placed on a two-layer soil

over bedrock are presented in Ref. [14].

4.2. Effect of foundation embedment

In the examples, the system parameters are given the

values assigned in Section 4.1. All foundations are

characterized by a modulus of elasticity Ef ¼ 106 MPa;

that is the foundation stiffness is kept constant. A detailed

discussion on the variation of both foundation stiffness an

embedment is presented in Ref. [14].

4.2.1. Foundations subjected to P-waves

Two foundations with embedments D ¼ 2 m and

D ¼ 4 m are considered together with the surface foun-

dation described in the previous section. The horizontal

components of the relative displacement at the top surface

from the foundation center are shown in Fig. 7 for D ¼ 2 m;

and in Fig. 8 for D ¼ 4 m. The real and imaginary

components of the vertical relative displacement com-

ponents at the foundation center are plotted in Fig. 9. In

Figs. 7 and 8, notice that at a low frequency, e.g. A0 ¼ 0:5; a

frequency that is smaller than any of the fundamental

frequencies for the three cases that are examined, which as

depicted in Fig. 9 lie in the 0.7–1.5 range, the system

responds as if there is no foundation. Specifically, the

horizontal displacement is negligible compared to vertical

displacement, and each point on the free surface shows a

uniform vertical displacement for low frequencies. When

the excitation frequency exceeds the natural frequency, the

system responds differently due to the presence of the

foundation. Parametric studies have shown that the number

of standing waves is usually less than six [14].

As expected in Fig. 9, the deeper the foundation

embedment, the lower the natural frequency of the system.

More importantly, as one can see from Fig. 9, the

embedment has a beneficial effect on displacement

amplitudes. Though the real part of the vertical relative

displacement component is almost the same for the

three foundations, an increase of the embedment decreases

the imaginary part of the response. The imaginary part

of the foundation with D ¼ 2 m is only 70% than that

of the surface foundation, while the imaginary part of

the foundation with D ¼ 4 m is only 40% than that of

Fig. 6. Effects of foundation stiffness for surface foundation to S-waves. Fig. 7. Horizontal displacement at top surface to P-waves (D ¼ 2 m).

Fig. 8. Horizontal displacement at top surface to P-waves (D ¼ 4 m).
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the surface foundation, which clearly indicates the effect of

foundation embedment on radiation damping.

4.2.2. Foundations subjected to S-waves

As in the previous example, three foundations with

D ¼ 0; D ¼ 2 m; and D ¼ 4 m are studied to assess the

effect of foundation embedment on the seismic response

for S-waves. The horizontal components of the relative

displacement along the top surface from the foundation

center are shown in Figs. 4, 10, and 11 for foundations

with D ¼ 0:2 m; and 4 m, respectively. The horizontal

relative displacement components at the foundation

center are plotted in Fig. 12 versus the nondimensionless

frequency A0:

The foundation response exhibits similar behavior to P-

waves. The effect of the embedment is not significant for

frequencies lower than the fundamental frequency. How-

ever, it becomes more important when the excitation

frequency exceeds the fundamental frequency. The standing

wave due to SSI travels about six standing waves and then

disappears [14]. Also, increasing the foundation embedment

enhances the SSI effect. Specifically, the presence of

sidewalls reduces the displacements demonstrating that

the deeper the embedment, the smaller the displacement. As

shown in Fig. 12, both the real (Re) and the imaginary (Im)

parts of the displacement are reduced to a similar degree

because of an increase of foundation embedment. The

displacement reduction of foundation with D ¼ 2 m is 30%

from that of the surface foundation, and the displacement

reduction for foundation with D ¼ 4 m is 4% from that of

the surface foundation.

Comparing the response due to P-waves with S-waves,

notice that the fundamental frequency of the system for

S-waves is only half of the system’s fundamental frequency

for P-waves. Though the standing wave disappears after six

circles for both P and S-waves, the standing wave for a

S-wave travels twice the distance of that for a P-wave,

which implies that a larger area at the free surface

Fig. 9. Effects of foundation embedment to P-waves.

Fig. 10. Horizontal displacement at top surface to S-waves (D ¼ 2 m).

Fig. 11. Horizontal displacement at top surface to S-waves (D ¼ 4 m).

Fig. 12. Effects of foundation embedment to S-waves.
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surrounding the foundation should be discretized to capture

the effect of S-waves on foundation response [13].

5. Conclusions

A study has been presented for the SSI analysis of

flexible strip-foundations embedded in layered soils sub-

jected to plane P-waves and S-waves. To simplify the

formulation, the seismic excitations are prescribed at the

bedrock interface. The numerical formulation is based on

coupling of the BEM and FEM methods.

Through parametric studies the effect of foundation

flexibility and embedment are investigated. It is demon-

strated that SSI plays an important role and should be

considered for both surface and embedded foundations when

the difference of the stiffness between the foundation and the

soil is large. A few significant observations include: when the

excitation frequency exceeds the fundamental frequency of

the soil–foundation system, the response of soft foundations

shows considerable difference from that of stiff foundations.

The foundation embedment has a beneficial effect on the

displacement response, since it can lead to dramatic

reductions. Indications are reductions of the displacements

in the order of 60–70% from those of surface foundations.
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