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Abstract

A study of soil±structure±¯uid interaction (SSFI) of a lock system subjected to harmonic seismic excitation is presented. The water

contained lock is embedded in layered soils supported by a half-space bedrock. The ground excitation is prescribed at the soil±bedrock

interface. The response is numerically obtained through a hybrid boundary element (BEM) ®nite element method (FEM) formulation. The

semi-in®nite soil and the ¯uid are modeled by the BEM and the lock is modeled by the FEM. The equilibrium equation for the lock system is

obtained by enforcing compatibility and equilibrium conditions at the ¯uid±structure, soil±structure and soil±layer interfaces under condi-

tions of plane strain. To the authors' knowledge this is the ®rst study of a lock system that considers the effects of dynamic soil±¯uid±

structure interaction through a BEM±FEM methodology. A numerical example and parametric studies are presented to examine the effects of

the presence of water, lock stiffness, and lock embedment on the response. q 2001 Published by Elsevier Science Ltd.
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1. Introduction

Seismic analysis of large systems considering soil±struc-

ture±¯uid interaction (SSFI) result in a rather involved

mathematical treatment when factors such as unbounded

extent of soil and ¯uid, compressibility of water, geometry

of structure, surface waves of water, and ¯exibility of struc-

ture, are taken into account. Systems that SSFI should be

considered include: (1) submerged or off-shore; (2) dam±

reservoir±soil; (3) storage tank; (4) intake towers; and (5)

lock and dam. Chen [1] has given a review on the research

up to 1982 of submerged off-shore systems. Developments

on this topic can be found in Refs. [2,3]. A comprehensive

review of the analysis of a dam±reservoir±soil system has

been presented by Dominguez et al. [4]. Research covering

different types of dam±soil±reservoir systems has been

reported by Refs. [5±11].

In this study, the lock system is a ¯uid contained open-

channel structure embedded in layered soil, see Fig. 1. It

presents many similarities with a storage tank system,

although the storage tank system is usually placed

above the ground level and contains a bounded amount

of ¯uid. A discussion on storage tank systems has been

given by Antes and Latz [12]. In the early stage of study-

ing the seismic response of storage tank systems, the tank

was assumed to be rigid and anchored to a rigid base, e.g.

Ref. [13]. Realizing that the ¯exibility of the tank can

play an important role on the seismic response, later

methods tried to address the issue. Representative semi-

analytical procedures employ assumed modes and added

masses to describe the displacement of the tank and

account for the effect of the ¯uid±structure and SSFI.

Representative works on the topic include Refs. [14±

23]. A recent work [24] on the seismic response of towers

and intake towers studies the effect of partial separation of

the foundation from the soil and presents a review on

pertinent topics including literature on the effects of

soil±structure and SSFI.

As an alternative method, the ®nite element method

(FEM) has found its application on the seismic analysis of

storage tank systems. One of the primary advantages of

FEM over semi-analytical procedures is that it is not limited

to simple geometry structure. Edwards [25] is known to be

the ®rst to introduce FEM to SSFI. Other early studies are

presented in Refs. [26±28]. In all these studies, the tank is

assumed to be rigidly connected to the soil. A representative

study [29] investigates the behavior of unanchored and

¯exible tanks.

A well documented disadvantage of FEM is its dif®-

culty in modeling the semi-in®nite soil and ¯uid domains.

However, combination of the boundary element method

(BEM) and FEM can overcome this dif®culty. Although a

large number of papers have been published on the
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application of BEM or FEM/BEM on the seismic analysis

of systems considering soil±structure interaction (SSI),

very limited studies can be found in the literature,

where issues of soil±structure±¯uid interaction (SSFI)

are addressed. Two early applications of BEM to struc-

ture±¯uid interaction (SFI) of ¯uid contained tanks

appeared in 1980. In these studies the tanks are modeled

by FEM and the incompressible ¯uid domain by BEM

[30,31]. Koh et al. [32] have studied the dynamic

response of storage tanks by combining BEM with the

FEM. In all these works, no soil±structure interaction is

considered. Therefore, they can be more properly classi-

®ed as structure±¯uid interaction (SFI), not SSFI

problems. To the authors' knowledge, one of the ®rst

investigations to include soil±structure±¯uid interaction

was Ref. [33]. In a paper by Antes and Latz [12], the SSFI

is studied in the frequency domain by the so-called

BEM±FIS method. In their work, the compressibility of

¯uid and surface sloshing is also included, and the SSFI is

considered by attaching a ¯exible tank to a rigid founda-

tion supported by an elastic soil.

The structural system studied in this work is a lock system

supported by a layered soil, see Fig. 1. The SSFI is treated

by a hybrid FEM/BEM in the frequency domain. Plate

elements are employed to model the U-lock, and the BEM

is applied to model the ¯uid domain and the layered soil. In

deriving the system equations, the equilibrium and compat-

ibility conditions at the ¯uid±structure, soil±structure, and

the soil layer interfaces are used.

2. System description

The system consists of a ¯uid±contained structure

embedded in layered soil deposits. Structures of this

kind include hydraulic channels, locks, long storage

tanks either open or covered by a ¯exible roof. One

dimension of the structure is much longer than the other

two with uniform loading so that the problem satis®es

conditions of plane±strain, see Fig. 1. Also, the thickness

of the walls is small compared to the width of the struc-

ture, which justi®es application of thin plate theory. In

order to consider the variation of soil properties along

the depth, the half-space soil domain is divided into `n'

layers with different material properties. The system is

subjected to harmonic seismic excitations described at

the bedrock±soil layer interface.

The following sections describe the derivation of the

equilibrium equation for each substructure, that is, the

structure, the ¯uid, and the soil. The BEM is used to

treat the soil and ¯uid domains, and the FEM is used to

model the walls and bottom lining of the lock. Such an

approach utilizes the advantages of each method. Speci-

®cally, BEM accounts for radiation damping automati-

cally and restricts modeling of contact areas only, while

the FEM is most suitable to model the ®nite size side and

bottom walls of the lock [34].

The notation shown in Fig. 1 is adopted. The free surface

of the ¯uid is denoted by `a' and the structure±¯uid inter-

face is indicated by `b'. The top soil (1) layer has boundaries

`e', `c', and `1'. The boundary `e' is the free surface, bound-

ary `c' is the soil±structure interface, and boundary `1' is the

contact interface with layer (2). The bottom layer (n) has a

top boundary `n 2 1' which is the contact interface with

layer (n 2 1) and bottom boundary `n' which represents

the interface with the half-space where the seismic excita-

tion prescribed. A general layer (k) between the top layer

and the bottom layer has top boundary `k 2 1' and bottom

boundary `k', where `k 2 1' is the contact interface between

layers (k 2 1) and (k).

3. BEM formulation and numerical treatment for the
¯uid and soil domains

3.1. BEM formulation for the ¯uid

For a compressible inviscid ¯uid with small displace-

ments and zero initial conditions, the governing equation

for the hydrodynamic pressure in excess of the hydrostatic

pressure expressed in the frequency domain is the Helm-

holtz equation [35±37]:

D2P�~x;v�1 k2P�~x;v� � 0 �1�
where P�~x;v� is the frequency response function for hydro-

dynamic pressure, k � v=c is the wave number, c is the

velocity of sound in the ¯uid, and v is the circular frequency

of the excitation.

The corresponding boundary conditions are

P�~x;v� � p�~x;v� x [ G1 �2�

Q�~x;v��q�~x;v� x [ G2

where G 1 is the free surface boundary, and G 2 is the
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Fig. 1. Fluid contained lock on layered soil.



contact interface, low case parameters p and q represent

known values at the boundaries, and Q is related to P

as given by

Q � 2P

2~n
�3�

in which ~n is the outward normal to the ¯uid boundary.

The numerical solution of Eq. (1) together with the

boundary conditions is obtained by applying the BEM.

The starting integral equation of BEM for the ¯uid in the

frequency domain is given by [38]

d�~j �P�~j � �
Z

G
�Q�~x�Pp�~x; ~j ; k�2 P�~x�Qp�~x; ~j ; k��dG �4�

where d�~j � depends on the smoothness of boundaries,

P* is the fundamental solution of Eq. (1) which is given

by

P�~x; ~j ; k� � 1

2p
K0�ikr� �5�

Q* is the derivative of P* with respect to the outward

normal, and ~r is the distance between vectors ~x and ~j .

Dividing the boundary into n elements and using

constant boundary elements, see Fig. 2(a), a set of n

linear equations can be obtained [36,37]

�H�{P} � �G�{Q} �6�
where {H}, [G] are n £ n matrices and {P}, {Q} are

vectors of length n. A simpli®ed form of Eq. (6) is

given by

�D�{Q} � {P} �7�
where [D]� [H]21[G].

The degrees-of-freedom at the free surface in Eq. (6)

can be condensed by employing the boundary conditions

at the free surface of the ¯uid. At the free surface, if the

effect of the surface waves is neglected, the boundary

condition is

{Pb} � {0} �8�
If the waves at the free surface are considered, then {Pa}

is related to {Qa} by [12]

{Pa� � g

v2
{Qa} �9�

where g is the acceleration of gravity.

Eq. (7) can be rewritten for the boundaries `a' and `b' as

[37]

Daa Dab

Dba Dbb

" #
Qa

Qb

( )
�

Pa

Pb

( )
�10�

Substitution of the boundary condition of Eq. (9) into

Eq. (10) yields

Daa 2
g

v2
Iaa Dab

Dba Dbb

24 35 Qa

Qb

( )
�

0

Pb

( )
�11�

From the ®rst half of Eq. (11), {Qa} is related to {Qb}

as given by

{Qa} � 2 �Daa�2
g

v2
Iaa

� �21

�Dab�{Db} �12�

Substitution of the expression for {Qb} into the second

half of Eq. (11) yields a condensed equation expressed

in {Pb} and {Qb} at the structure±¯uid contact interface

only, that is

�D 0�{Qb} � {Pb} �13�
where

�D 0� � �Dbb�2 �Dba� �Daa�2
g

v2
Iaa

� �21

�Dab� �14�

In order to relate the variables{Pb} and {Qb} of the

¯uid to the equilibrium equations for the soil and struc-

ture, that are expressed in terms of nodal forces and

nodal displacements, use must be made of the boundary

conditions at the structure±¯uid contact interface, that

is

q�~x; t� � r �ui�~x; t�ni
�~x; t� �15�

and

ti
x�~x; t�

ti
y�~x; t�

8<:
9=; � pi�~x; t� ni

x

ni
y

8<:
9=; �16�

where ti
x; ti

y are the components of the traction at the

ith element, and ni
x; ni

y are the corresponding outwards

normals [37], and �ui is the absolute acceleration of the

structure.

From the boundary condition expressed by Eq. (15),

{Qb} is related to {Ub} in the frequency domain as

given by

{Qb} � rsav
2�Cb�{Ub} �17�

where

�Cb� �

n1
x ; n

1
y

n2
x ; n

2
y

¼

nm
x ; n

m
y

8>>>>><>>>>>:

9>>>>>=>>>>>;
�18�

in which mdenotes the total number of boundary

elements at the structure±¯uid contact area.

Similarly, based on the coupling condition of Eq. (16),

{Pb} is related to {Tb} by

{Tb} 2 �Cb�T{Pb} �19�
where

{Tb} � �T1
x ;T

1
y ;T

2
x ;T

2
y ;¼;Tm

x ;T
m
y }T �20�
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Fig. 2. (a) Discretization of the lock±soil±¯uid system: (1) ¯uid; (2) lock-lining; (3) soil interface; and (4) soil±bedrock interface. (b) Geometry of lock±soil±

¯uid system.



and

{Pb} � {P1
x ;P

1
y ;P

2
x ;P

2
y ;¼;Pm

x ;P
m
y }T �21�

Also, the nodal force vector {Fb} is related to the tractions

as given by

{Fb} � �Lb�{Tb} �22�
where

{Fb} � {F1
x ;F

1
y ;F

2
x ;F

2
y ;¼;Fm

x ;F
m
y }T �23�

and

�Lb� �

l1 0 ¼ ¼ ¼ 0

0 l2 ¼ ¼ ¼ 0

¼ ¼ ¼ ¼ ¼ ¼

0 0 ¼ ¼ ¼ lm

8>>>>><>>>>>:

9>>>>>=>>>>>;
�24�

in which li is the length of the ith boundary element.

In view of Eq. (19), Eq. (22) can be expressed as

{Fb} � �Lb��Cb�T{Pb} �25�
Substituting the expression for {Qb} from Eq. (17) into Eq.

(13) and multiplying both sides of the resulting equation

with �Lb��Cb�T yields the following relationship between

the nodal forces and nodal displacements

{Fb� � rsv
2�Lb��Cb�T�D 0���Cb�{Ub} �26�

Let

�Kb� � rsv
2�Lb��Cb�T�D 0��Cb� �27�

Then Eq. (26) can be simpli®ed to express the equilibrium

equation for the ¯uid in terms of nodal displacements and

forces, that is

{Fb} � �Kb�{Ub} �28�
BEM formulation for the soil

The governing equation for soil layers that are homoge-

neous, isotropic, and linearly elastic with small displace-

ments is the well known Navier equation. Expressed in

terms of transformed displacements U in the frequency

domain, Navier's equation is given by Eq. (29) where, for

simplicity, zero initial conditions have been assumed;

k� iv , and c1 and c2 are the P- and S-wave velocities,

respectively [39]

�c2
1 2 c2

2�Ui;ij 1 c2
2Uj;ii 2 k2Uj � 0 �29�

The corresponding boundary conditions to Eq. (29) are

Ui�~x; k� � Fi�~xk� ~x [ G1 �30�

Ti�~x; k� � Gi�~x; k� ~x [ G2

where F�~x; k� and G�~x; k� are known displacements and

tractions at the boundaries G 1 and G 2.

The BEM is employed to numerically solve Eq. (29)

together with the boundary conditions expressed by

Eq. (30). Similarly to Eq. (4), the starting expression

for the BEM is the boundary integral equation

d�~j �Ui�~j ; k�1
Z

G
Tp

ijdG �
Z

G
Up

ijTjdG �31�

where the fundamental solutions: U p
ij ; Tp

ij are given by

[34,38]

Up
ij�~j ; ~x; k� � 1

2prc 2
2

�Cd ij 2 xr; ir; j�Tp
ij�~j ; ~x; k�

� 1

2p

" 
dC

dr
2

x

r

! 
dij

2r

2n
1 r;jni 2 2

x

r

!
njr;i

2 2r;ir;j
2r

2n
2 2

dx

dr
r;ir;j

2r

2n
1

 
c2

1

c2
2

2 2

!

£
 

dC

dr
2

dx

dr
2

x

r

!
r ;in;j

#
�32�

where

C � K0

kr

c2

� �
1

c2

kr
K1

kr

c2

� �
2

c2

c1

K1

kr

c1

� �� �
�33�

x � K2

kr

c2

� �
2

c2
2

c2
1

K2

kr

c1

� �
in which K0, K1 and K2 are modi®ed Bessel functions of

the second kind and order 0, 1, and 2, respectively.

Following well established discretization procedures for

the boundaries and using constant boundary elements, see

Fig. 2(a), Eq. (31) leads to a set of 2N linear equations that

relate the displacements to tractions, that is

�H�{Ui} � �G�{Ti} �34�
where [H] and [G] are 2N £ 2N matrices, the 2N vectors

{Ui} and {Ti} are the displacement and traction vectors

on the boundaries for the ith layer, and N is the number of

boundary elements. A description of the methodology is

given in several references, e.g. [36,37].

In order to derive the equilibrium equation for the whole

system, the traction vector {Ti} in Eq. (34) must be replaced

by a nodal force vector. Speci®cally, Eq. (34) can be cast

into the following form after some simple matrix

manipulations:

�Ki�{Ui} � {Fi} �35�
where

�Ki� � �L��G�21�H� �36�

{Fi} � �L�{Ti} �37�
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in which

�L� � diag{l1l1l2l2¼lNlN} �38�
where li is the length of the ith boundary element.

4. FEM formulation for the lock and coupling of BEM
with FEM

4.1. FEM formulation for the lock

The Mindlin±Kirchhorff plate theory [40,41] is utilized in

the FEM formulation for the lock. According to this theory,

the governing equations for bending and axial deformation

are uncoupled. For a 2-D problem in the frequency domain,

the governing equation for bending is reduced to the

Bernoulli±Euler beam equation

d4Uy

dy4
2 l4

1Uy � 0 �39�

where

l4
1 �

rf hv
2

Df

�40�

in which Df is the ¯exural rigidity of the plate de®ned by

Df � Efh
3

12�1 2 v2
f �

�41�

where h represents the thickness of the plate, and r f, Ef, vf

are the modulus of elasticity, mass density, and Poisson's

ratio of the plate, respectively. Notice that the bending stiff-

ness EI in the classic Bernoilli±Euler beam theory for bend-

ing has been replaced by Df to account for the longitudinal

stiffness of the plate. The governing equation for axial

deformation is given by

d2Ux

dx2
1 l2

2Ux � 0 �42�

where

l2
2 �

rfv
2

Ef =�1 2 v2
f �

�43�

The lock is divided into m elements, see Fig. 2(a). Follow-

ing standard FEM procedures, the equilibrium equations for

the axial and ¯exural response in the frequency domain can

be written in the form [42,43]

Duu Duu

Duu Duu

" #
Uf

u

( )
� Ff

M

( )
�44�

where the subscripts u and u refer to nodal displacements

and rotations, respectively and M denotes moments acting

at the nodes. Through condensation of the rotational

degrees-of-freedom, Eq. (44) can be rewritten in the

following form [43]

{Ff} � �Kf�{Uf} �45�

where

�Kf� � �Duu�2 �Duu��Duu�21�Duu� �46�

4.2. Coupling of BEM with FEM

The governing equation for the whole system can be

obtained by enforcing compatibility and equilibrium condi-

tions at the soil±structure and structure±¯uid interfaces.

Speci®cally, at the interfaces the displacements from each

substructure should satisfy the relationships

{Ue} � {U0
e }

{Uc} � {U0
c } � {Us

c}

{Ub} � {U0
b} � {Ua

b} � {Uf
b}

{Ui} � {Ui21
i } � {Ui

i}

{Ug} � {Un
n}

�47�

where the superscript s represents walls of the lock, f

denotes ¯uid, and other superscripts indicate the location

of a soil layer, subscripts denote the boundaries according

to the adopted notation given earlier. The common displa-

cements at the interfaces are indicated without superscripts,

and Ug is the seismic excitation at the interface of the

bedrock, see Fig. 1.

The forces from each substructure sum up to zero where

no external forces are applied, that is

{F0
e } � {0}

{F0
e } 1 {Fs

c} � {0}

{F0
b} 1 {Fa

b} 1 {Ff
b} � {0}

{Fi21
i } 1 {Fi

i} � {0}

�48�

Combining the equilibrium equations for each substruc-

ture and employing the compatibility conditions at the

interfaces, the equilibrium equation for a system is

obtained [37]

�K�{U} � {P} �49�
where

{U} � {Ue;Uc;Ub;U1;¼;Ui;¼;Un21}T �50�

{F} � {0; 0; 0; 0;¼; 0;¼;2Kn
n21;n}T Ug �51�

and
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5. Numerical example and parametric studies

The soil±structure system consists of a lock with a width

2B embedded in a soil layer with a depth H over a half-space

bedrock (see Fig. 2(b)). The discretization of the three

domains, i.e. water, lock and soil are shown in Fig. 2(a).

The depth of the embedment is D, and it is assumed that the

¯uid ®lls up the lock. In the numerical examples, the

contained ¯uid is water. The material properties of the lock

are: mass density r f� 2500 kg/m3, Poisson's ratio vf� 0.3,

and damping ratio j f� 0.05. The material properties of the

soil are: modulus of elasticity Es� 100 MPa, mass density

r s� 2000 kg/m3, Poisson's ratio vs� 0.33, and damping

ratio j s� 0.05. To evaluate the effect of lock stiffness on

the response, two cases, i.e. Ef� 1 £ 103 MPa and

Ef� 1 £ 106 MPa are considered. Their relative stiffness is

equal to 45 and 0.045, respectively. The relative stiffness

and mass are de®ned by [44,45]

Kr � Efh
3

1 2 v2
f

=
EsB

3

1 1 vs

Mr � rf

rs

�53�

Locks with relative stiffness of 500, 5, and 0.05 are char-

acterized as rigid, intermediate, and very soft, respec-

tively. Thus, locks with relative stiffness of Kf� 45 and

0.045 can be considered as stiff and soft, respectively. The

ratio of lock width to thickness of the soil layer is H/

B� 2. Two different embedment depths to width ratios

D/B� 1 and D/B� 2, are considered to investigate the

effects of embedment on the response. A horizontal

harmonic excitation with amplitude Ug and circular

frequency v is prescribed at the interface of the bedrock

with the soil layer.

The results are presented in the form of relative

displacements Ur, that is

Ur � U

Ug

�54�

where U is the displacement at either the structure surface or

the top free surface.

Two factors of great importance in the BEM formulation

using fundamental solutions of the in®nite soil domain are the

truncation distance L and the element size of the boundary

elements lI, see Fig. 2(b). To select optimum truncation

distances and size of the boundary elements that maintain

the balance between accuracy and ef®ciency for ¯exible

foundations, a series of convergence studies has been

conducted. For a detailed discussion, the reader is referred

to the work by Xu [37]. The investigation in Ref. [37] arrived

at the following general discretization guidelines for SSI

analysis of systems subjected to seismic waves: the displace-

ment response of the system can be divided into two different

ranges, covering low and high frequency ranges with the

fundamental frequency as the threshold. When the excitation

frequencies are greater than the fundamental frequency, a

sinusoidal-like curve that is referred to as `standing wave'

in the later discussion forms at the top free surface and

vanishes after several circles. The convergence studies indi-

cate that the required truncation distances should include four

circles of standing waves, while the boundary element size

should be one-tenth of the length of the standing wave. At the

low frequency range, i.e. excitation frequencies lower than

the fundamental frequency, the effect of discretization mesh

is not so signi®cant and larger element sizes as well as short

truncation distances can be used.

Fig. 3(a)±(d) shows the relative displacements Ur at the

center of the bottom side of the locks versus the nondimen-

sionless frequency, A0, de®ned by

A0 � Bv

C2

�55�
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K0
ee K0

ec K0
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c1

K0
be K0

bc 1 Ks
bc K0

bb 1 Ks
bb 1 Kf

bb K0
b1

K0
1e K0

1c K0
1b K0

11 1 K1
11 1 K1

12

K1
21

¼

¼ Ki21
i21;i

Ki;i21 Ki21
i;i 1 Ki

i;i Ki;i11i

Ki
i11;i

¼

¼ Kn21
n22;n21

Kn21
n21;n22 Kn

n21;n22

26666666666666666666666666664

37777777777777777777777777775
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As indicated in Fig. 3, solid lines represent relative displa-

cements when no water is present, while dash-lines indicate

relative displacement when the water is included. It is

observed that the effect of water on the seismic response

is not signi®cant, especially at the low frequency range, see

Fig. 3(a)±(c). However, as shown in Fig. 3(d), the relative

displacements are considerably affected by the presence of

water at the high frequency range for a ¯exible lock with

D/B� 2. Also note that at a frequency equal to the funda-

mental frequency of the system, the displacements for all

the four cases with water present are different from those

with no water present. Speci®cally, the displacements

with water in the lock are larger than those without the

presence of water.
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Fig. 3. Effect of water on relative displacement, Ur: (a) stiff foundation, D/B� 1; (b) soft foundation, D/B� 1; (c) stiff foundation, D/B� 2; (d) soft

foundation, D/B� 2.



The effect of relative stiffness can be evaluated from

Fig. 4(a) and (b) that shows the relative displacements

Ur at the center of the bottom side of water-®lled locks.

Fig. 4(a) shows the displacements Ur for D/B� 1, and Fig.

4(b) depicts the displacements Ur for D/B� 2. Comparison

between Fig. 4(a) and (b) clearly demonstrates that the

effect of lock stiffness is signi®cant. Although at low

frequencies, i.e. A0 less than the fundamental frequency,

both soft and stiff locks respond similarly, at high frequen-

cies soft locks react very differently from stiff locks. Also,

notice that within a certain frequency range, the relative

displacements for soft locks are much larger than those for

stiff locks, while at some other frequency range, the

reverse is observed. Therefore, the presence of the water
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Fig. 3. (continued)



does not always have a bene®cial effect on the system

response. When Fig. 4(a) is compared to Fig. 4(b), larger

differences on the response are observed for the lock with

deeper embedment. Therefore, it is reasonable to conclude

that the effect of lock stiffness becomes more signi®cant

when the embedment of the lock increases.

The effect of embedment on the response of the ¯uid

®lled locks is investigated next. Fig. 5(a) and (b) show the

relative displacements at the center of the bottom side of

a soft lock and a stiff lock, respectively, for D/B� 1 and

D/B� 2. As shown in Fig. 5, for both stiff and soft locks,

an increase of embedment causes a decrease of the funda-

mental frequency of the system. It is also observed that an

increase of embedment reduces the displacements around the

fundamental frequency, but may result in larger displace-

ments at a higher frequency. Finally, comparison between
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Fig. 4. (a) Effect of water foundation stiffness on relative displacement, Ur, (D/B� 2).



Fig. 5(a) and (b) shows that the effect of lock embedment is

more signi®cant for soft locks than for stiff locks.

6. Conclusions

A study has been presented on the soil±structure±

¯uid interaction analysis of a lock system subjected to

harmonic seismic waves. The water contained lock is

embedded in soil layers supported by a half-space

bedrock. The ground excitation is prescribed at the

soil±bedrock interface. Through a hybrid BEM±FEM

formulation, the ¯exible lock is modeled by the FEM,

while the semi-in®nite soil layers and the contained
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Fig. 5. Effect of foundation embedment on relative displacement, Ur: (a) soft foundation; (b) stiff foundation.



¯uid are modeled by the BEM. The equilibrium equa-

tion of the system is assembled by enforcing compat-

ibility and equilibrium conditions at the ¯uid±structure,

structure±soil, and soil±layer interfaces.

The study demonstrates the important role the relative

stiffness and embedment play on the seismic response of

lock systems. Parametric studies are conducted to investi-

gate the effects of hydrodynamic forces, the relative stiff-

ness of the lock lining±soil system, and the embedment of

the lock on the response. The study also shows that the ¯uid

plays a signi®cant role on the displacement amplitude of

locks with small stiffness and large embedment. For other

cases, however, the effect of ¯uid on the displacements

could be omitted from the analysis, except for frequencies

close to the fundamental frequency of the system. Speci®-

cally, when the frequency of the excitation is close to the

fundamental frequency of the system, the displacements of a

water-®lled lock are much greater than those with no water

present. The parametric studies demonstrate that an increase

of either the relative stiffness or the embedment of the

system does not warrant reduction of the system response

for the same excitation.
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