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A transient Green function due to suddenly applied line loads in an isotropic and 
homogeneous half-space is reported in this paper. The derivation of the half-space 
Green function in the Laplace and the Fourier transform spaces is first reviewed. 
Following an explicit inversion of the Fourier transform, the inverse Laplace 
transform is implemented along the contour integral on the p-complex plane in an 
integral form. The half-space Green function consists of full-space Green functions 
and a singularity-free complementary term. It can be easily incorporated into current 
transient boundary elements using the transient full-space Green function. Combined 
with finite elements, the half-space Green function can be used in a hybrid procedure 
to solve transient half-space problems without discretization of the free surface. 
Numerical results are presented to illustrate transient wave propagation in a half- 
space. © 1998 Published by Elsevier Science Ltd. All rights reserved 

1 I N T R O D U C T I O N  

In recent years, the boundary element method (BEM) has 
received increasing attention in solving dynamic problems 
involving unbounded media (e.g. Refs 1-3). The fundamen- 
tal solution since all these formulations were Green func- 
tions for a full-space medium. In order to solve half-space 
problems, a part of  the free surface has to be discretized in 
the vicinity of  the region of  interest to satisfy the traction- 
free conditions. Availability of  half-space fundamental 
solutions eliminates the use of  traction-free surface and 
greatly simplifies the solution procedure. Many researchers 
have therefore attempted to derive fundamental solutions 
for the half-space problem. Lamb 4 and de Hoop 5 obtained 
solutions for surface line loading. Apsel 6 and Kausel 7 
respectively developed Green's functions for a layered 
half-space in the frequency domain. The surface response 
due to the impulsive line load within a half-space is pre- 
sented by Payton s using de Hoop 's  technique. A transient 
solution to the impulsive point load has been given by 
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Johnson 9. Kobayashi and Nishimura l° discussed the deriva- 
tion of  a half-space fundamental solution based on the full- 
space one. A two-dimensional frequency domain solution for 
a half-space has been developed by Kobayashi 11. Banerjee 
and Mamoon 12 derived the half-space solution for the per- 
iodic point force using a technique developed by Mindlin 13 
who solved the corresponding 3-D static problem. Guan and 
Novak 14"15 developed transient Green functions due to 
surface loads over rectangular and strip regions respectively. 

The direct time domain BEM has become an attractive 
alternative to the frequency domain BEM for solving non- 
linear problems. This paper describes the derivation of a 
transient fundamental solution due to line loads suddenly 
applied within the half-space. Utilising the solution in the 
frequency and wave-number domains given by Kobaya- 
shi 1 l, the time domain solution is obtained after first invert- 
ing the Laplace transform in an integral form following the 
procedure of  Eason 16. The inversion of  the Fourier trans- 
form is then carried out explicitly with respect to the wave- 
number 4. Other applications of this technique can be found 
in studies of  Guan and Novak 14'15, who obtained three- 
dimensional solutions for surface loading. Numerical results 
are presented to illustrate wave propagations in the half- 
space. 
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2 F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider an elastic, homogeneous half-space described by 
the shear modulus  #, mass densi ty  O and Po i s son ' s  rat io v, 
shown in Fig. 1. The longi tudinal ,  t ransverse  and Ray-  
leigh wave veloci t ies  are denoted by a ,  fi and CR. 
Based on S tokes '  solut ion (see e.g. Ref.~7), the Green 
function for an infinite medium subjected to suddenly  
appl ied  line loads can be expressed  in the Lap lace  trans- 
form domain  as 

. 1 ( fi2 02 
CJ k = -  . - 2 - 2 ~ .  ( g o (  p ) 2rc#p \ p 0 xjx k 

- K o ( ; r ) ) + f i k K o ( ~ r ) )  ( l )  

where Xl = x ,  x2 = z, as in the coordinate system, Fig. 1. 
The superscript * denotes the Laplace transform with 
respect to time, K0 the modified Bessel function, p the 
Laplacian parameter  and 

r = X/x 2 + (z - ~*)2  (2) 

The loads are applied at the point with coordinates (0,~') as 
shown in Fig. 2. 

Based on the following expression for the modified Bes- 
sel function K0 l S 

f ac , ~-2.1/2. COS X~ j ~  
K 0 (k (x  2 --}- .},2 ) 1/2 ) = J o  e x  p(  - y ( k  2 J r  ~ ) ) ( k 2 ~ l / ~ ( 1 ~  

(3) 

Re(y) > 0, Re(k) > 0 

we have 

0 K°(k(x2 Jr- v2)l/2)e i(x d~ ----- 7r exp( - y(k 2 + (2)1/2) 
- (k 2 _[_ ~2)1/2 

(4) 

Utilising eqns (1) and (4), the displacement expressions in 
the Fourier transform domain with respect to the coordinate 

x can be obtained 

P ~ ( ( ,  z, p; ~-) = r ~ ( x ,  z, p; ~-)e i~x dx vo 

1 (E2~(z ~,~ _k~k~e(~ ~)k~) 
-- 2op3k.O c (5a) 

if 
--at * 

f'*z((, z,p; ~) = Pzz(x, z,p; ~')e i~ dx 
w ~  

1 
_ 2pp3k~.(~2e(:- ~)ke _ k~k~e(: r)k,~) (5b) 

P;: ( ( ,  z ,p ;  ~) = _ f i ' ~ d x ,  z ,p ;  f ) e  ~ dx 

= 2 0  (e ( -¢)k~_e(: ¢)k,~) (5c) 

['*~.(t~, z,p; ~) = ['*z(~, z,p; ~) (5d) 

where the bar denotes the Fourier transform with respect to 
the horizontal coordinate, and the variables ks and k¢ are 
given by 

k¢ = ~ 2  q_ p2/f12 (6a) 

/ 
ks = ~/~2 q._p2]o~2 (6b) 

The stress components can be obtained from the s t ress-  
displacement relationship 

r}}, = Xr ......... 6jk + l*(I'j..k + I'k,,O) (7) 

where the index n denotes the stress induced by the force in 
the nth direction, and X and tx are Lame ' s  constants. 

The displacement fundamental solution for the half-space 
can be determined using fictitious forces shown in Fig. 2 
based on the solution for the full-space. The solution has 
been described in detail by Kobayashi  ~ l and only the salient 
steps are presented in the following. 

For the loads applied shown in Fig. 2(a), only the traction 
component t= is induced at the plane z = 0; while for the 
loads in Fig. 2(b), only the traction component t~ is induced at 
the plane z = 0. In order to satisfy the traction-free conditions 

(o,-0-~ (o,-0 

--- X 

z Z 
(a) (b) 

p X 

Fig. 1. Geometry of the problem. Fig. 2. Illustration of the method involving fictitious forces. 
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at z = 0, tractions opposite in direction but equal in magni- 
tude must be applied at z = 0. Therefore, the Green function 
for a half-space consists of the displacements induced by the 
two line loads and the tractions applied at the surface, viz. 

~;k(~, z ,p;t)  = f';~(~, z,p; t)  + f';~(~, z,p; - ~) 

+ ~,~*~(~, z,p f)  (8) 

and where 

( ;2 ) )  - *  _ _  k ~ z  Uxx pARkcao3 2k~k~e- - 2( 2 + e -  ~z 

× (2k,~k~e-~t-(2~2+P~--g)e-k~) (9a) 

uz x-* = p~-r~3--i~ (2~ 2e k~z_ (2~2 + p2~) e-k~z) 

X (2k~k~e -ke¢- (2~2+  P~2)e -k-~') (9b) 

p2 _ 
_, if (2~2 e k . z _ ( 2 ~ 2 + ~ ) e  k~z) 
Uxz- pARp3 

× ( 2 k ~ k ¢ e - k ~ ' - ( 2 ~ 2 + ~ ) e  ~¢) (9c) 

U z z =  \2k~k¢e-k~z- 2 ( 2 +  e k~z 

x (2k~k~e-k~r-- (2~2 + P~--~)e-k~r) (9d) 

where 

Ar = ( ~ +  2~2) - 4~2k~k~ (10) 

is the Rayleigh function. 
Applying the inverse Laplace and Fourier transforms to 

eqns (8)-(9), we obtain 

Gjk(x, Z, t; ~) = I'jk(x, Z, t; ~) + r jk(x, Z, t; -- ~) + ujk(x, Z, t; ~) 
(11) 

where the first two terms are Stokes' solutions. Stoke's 
solution for the line load with a Heaviside time step func- 
tion is given by (see Ref. 17) 

l oz ( f  ~ d 
rJk-- 27rpOXjXk\Jr (r12:~-r2)l/2fol)(H(t~ -t)) 

dr I - H ( t ~ - u ) ) d v  " f  H ( t - - ~ ) ( ~ / 2  -[- /~2J r 2 ; 2 )  1/2) 

(12) 

The third term on the right hand side of eqn (11) is 

expressed as 

1 f+~_ ujk(X, Z, t; ~) = ~ J _  Ujk(~, Z, t;~')e-i~x d( (13) 

where ~jk((, z, t; ~') is obtained by the contour integration on 
the p-complex plane from the expressions in eqn (9). As 
demonstrated in Appendix A, the wave-number ( in 
fijk((,z,t;~) is separated from other variables and the 
inverse Fourier transform can be implemented explicitly. 
The expressions used in the evaluation of the integration in 
eqn (13) are defined as (see Ref. 18) 

Xl(% y)= I~ e-~V sin(~sin2(~t/2)d~ 

1 y 1 
= ~arctan ~ - ~/2t2 _ y2 ~arctan ~y2 + 2yY (14a) 

Xz(%y)-----I2 e ~V c°s(~y)sin2((~t/2)( d~ 

= lln (3 ,2 + 07t + y)2)(3'2 ÷ 07t - y)2) 
8 (,y2 .q_ y2)2 (14b) 

ac . . 2  t'j 71" 
, , f sln(~y)sm (~r/t/2),~ 0 < < nt 

x 3 t y ) = j 0  ~ - a t=  / 4 Y 
0 y>~ t  

(14c) 

, , f~ cos(~y)sin2(~Tt/2), ~ 1 y2 _ 7/2t 2 
X4I.Y) : J0  ~ a t  = ~ln ~ U ~  

(14d) 

Substituting eqn (14) into eqn (13) results in eqns (15). The 
various parameters in eqn (15) are given in Appendix A. 
An adaptive integration scheme has been used to evaluate 
the integrals in eqn (15) 19. It is straightforward to integrate 
the Green function and implement it in existing BEM codes 
(Richter and Schmid 2° describe procedures for treating spe- 
cial cases associated with surface elements). 

3 NUMERICAL ILLUSTRATIONS 

In this section, the wave propagation characteristics in the 
half-space are investigated using the Green function devel- 
oped in this work. The Poisson's ratio for the half-space is v 
= 0-25. 

Lamb 4 studied the surface response due to a vertical 
impulsive load. A complete solution has been presented 
by de Hoop 5 using a transform technique, including the 
response to an impulsive load applied in the horizontal 
direction. The time dependence of their solutions is the 
Dirac delta function. The response at the observation point 
(r, 0) due to the load applied on the surface at position (0,0) 
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2 2 2 - (4%c~xz(ct~(z + f),x) - 2co~c~cR(X2(Cc~Z q- cB~),x) -I- X2(CBZ -t- ce~),x)) -t- cRX2(Ce~(Z q- ~),x) 
Uxx 7rpK(CR)c,~ 
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(15a) 
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(15b) 
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(15c) 
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Fig. 3. Comparisons between the Green function and results from the literature. 

is depicted in Fig. 3 versus the normalized time ~" defined as 
r = t3/r, where r is the distance between the observation 
point and the source. Also,  the solutions of  Guan and 
Novak 15, Lamb 4 and de Hoop 5 are presented in Fig. 3 for 

the purpose of  comparison. The results from de Hoop (Fig. 
3(a)) and Lamb (Fig. 3(b)) were obtained with numerical 
t ime convolution using their original solutions. The arrival 
t imes of  the longitudinal,  transverse and Rayleigh waves are 
denoted by P, S and R. Excellent  agreement among the 
results is observed before the Rayleigh wave arrives at the 
observation point. The results from Lamb and de Hoop start 
diverging from the other solutions after the Rayleigh wave 
arrives. The differences are induced by strong singularities 
in their original solutions used as integral kernels in the 
numerical  t ime convolution. 

As indicated in Fig. 3(a), the arrival of  the P wave is 
evident in the response of  uxx. After  the arrival of  the S 
wave, the trend of  the response changes. The singularity 
occurs as the Rayleigh wave arrives. The P wave arrival is 

not obvious in the displacement uzz shown in Fig. 3(b). 
However,  the arrival of  the S wave can be clearly distin- 
guished. The contribution from the Rayleigh wave is pro- 
nounced in the response around the time it arrives. After  the 
Rayleigh wave leaves, both displacements u~ and Uzz 
increase monotonical ly with the increasing time. 

The effect of  the wave reflection at the surface is plotted 
in Fig. 4 for various source burial depths, where oo repre- 
sents the solution in the full-space. In this study, the distance 
between the source and the observation points is constant 
despite the changes in the burial depth of  the source below 
the free surface. Fig. 4 shows the displacements in the direc- 
tions of  the applied loads. Before the reflected wave at the 
free surface arrives at the observation point, the responses 
are exactly the same. The solutions for the half-space 
subsequently deviate from the full-space solution. As the 
burial depth of  the load increases, the difference between 
the half-space and full-space solutions narrows. It is 
observed that the wave reflection more significantly affects 
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Fig. 4. Green function solution for displacement uii to loads at various depths below the free surface. 
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the displacement in the direction normal to the boundary of  
the half-space, i.e. in the z direction. The half-space solution 
yields greater displacement predictions that does the full- 
space solution, because of  overlapping of the reflected 
waves. However, solutions not presented here reveal that 
the displacements uij (i =/:j) in the half-space converge 
rapidly to those in the full-space as the depth of the observa- 
tion point z increases. 

The influence of  the Rayleigh wave on the response 
induced by the surface load is depicted in Figs 5 and 6. 
Unlike the surface response, response iAii (i =X, Z) within 
the half-space remains definite when the Rayleigh wave 
front arrive, Fig. 5. The contribution from the Rayleigh 
wave decreases significantly as the depth of the observation 
point z increases. The response u~ within the half-space for 
z /x=0 .1  drops slightly as the Rayleigh wave arrives. It 
appears that the u:z response is more significantly affected 
by the Rayleigh wave. 

Fig. 6 shows the response uij (i ¢ j )  for different observa- 
tion points in the half-space. Each of  the surface responses 
feature finite jumps after the Rayleigh wave arrives. How- 
ever, for the observation points below the surface, the influ- 
ence of  the Rayleigh wave is not evident. The arrival of  the 
S wave is marked, particularly for the observation points 
deeper below the free surface. 

4 C O N C L U D I N G  R E M A R K S  

A transient Green function has been developed for half- 
space response to suddenly applied line loads. It can be 
readily implemented in hybrid finite element-boundary ele- 
ment formulations to solve transient elastodynamic problems 
without modeling of  the free surface. The Green function can 
be used to construct transient boundary elements for 
problems in elastodynamics involving a half-space. The 
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Fig. 6. Effect of the Rayleigh wave on the Green function for displacement u o (i 4: j )  at various observation points due to loads applied at 
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procedure used to derive the fundamental  solution can be 
extended to three dimensions. Comparisons with other solu- 
tions confirmed the accuracy of  the transient Green func- 
tion. Illustrative numerical results from transient wave 
propagation in a half-space have been presented. 
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A P P E N D I X  A 

The ~j~ can be obtained by contour integration on the p-  
complex plane using expressions such as 

1 f~ +J~¢ 
~txx = 27r~jy_j Ft*xxePt dp (A1) 

where 

-* ~2 ( 2 k c ~ k # e _ k a z _ ( 2 ~ 2 + p 2 e _ k ~ z )  
Uxx- o~Rk~2 -~ / 

is an analytic complex function except at poles and branch 
points. The poles of  the integrand in eqn (A1) are found 
from the A~ = 0 condition, as 

p = 0 (A2) 

p =  + i l ~ l f e  

where CR is the Rayleigh wave velocity. The four branch 
points, at which, ks = 0 and k/3 = 0, are given by 

p =  _+ il~lo~ (A3) 

p =  ~ i1~1/3 

Branch cuts are made as depicted in Fig. 7 such that the 
integrands in eqn (AI )  will be single-valued and analytic on 

l m  

¥+i~, 

Fc 

iCR , ~ Re 

-iCR 
, -ikp 

Fc 

¥-i** 

Fig. 7. Integration contour path on the p-complex plane. 



276 F. Guan et al. 

_ (2c,~cee Itlcez _ (2 - C2/fl2)e-Ric~z)(2c~cee -Itl~.~¢ _ (2 - C2/fl2)e -I~lc~-) sin2tCRt/2 
Uxx -= pK(CR)Ca I t l  

[o~ 4c2(4a2b 2 sin b(z + ~ ' ) ] t l  - 2abc(e - I t l . i"  cos bzt .4- e Ri~z cos b~'t)) sin2tr/t/2~ 

+ .~ -~Ta~ 7 ~ 7  7 ~ 6~Tq,2/fi~-- i~; -- ~ / ~  I~- ~'  

_ 16~ ~ b(4a2b 2 cos b(z + ~)t + 2abc(e Iti4" sin bzltl  + e-Itl~Zsin b~'ltl) - c2e -Itla(z+t)) sin2tr/t/2 

_ 4 f [  4a2b2 COS 

rrp((2 - -  ,q2/f12)4 q_ 160/2/fl2 _ 1)(1 - n2/0~2))~]  3 

b(z + ~)t + 2abc(cos(bz + a~)t + cos(b~" + az) t )  + c 2 cos a(z + ~)t sin2trtt/2 d 

~roa((2 - - / , ] 2 / f l 2 ) 2  _1_ 4 ~X/TY7~ _ 1 ~//~]2/Od2 - -  1)73 
(A5) 

(2e -Itt~.e~ _ (2 - C2/fl2)e It%z)(2c~cee-itlc~- _ (2 - C2/fl2)e -RIc.~') i sin2tCRt/2 

uzx = pK(C R) I t l  

_ [o, 4c2(4ab cos b(z+ ~)t + 2c(e-Itl~¢ sin bzltl - abe I~laz cos b~' t )) i  sin2tr/t/2_dr/ 
d e  ~ r p ( ( 2  - ~ 2 / f l 2 ) 4  _{_ 1 6 ( r / 2 / f 1 2  _ 1 ) ( 1  - -  'q2/o~2)) 'r13 t 

_ 1 6 [  ~ ab(4ab sin b(z + ~')ltl - 2c(e Itla¢ cos bat  + abe-Itl~ sin b~'l t I) + c2e Itla(z+ t)) i sin2trtt/2dr/ 

de  7tO((2 - ~ /2 / f l 2 )4  _}_ 16(r/2/fl 2 - -  1 )(1 - ~'/2/O~2))'/7 3 t 

4 (~ (4ab sin b(z + ~)t + 2c(sin(bz + a~)t - ab sin(b~" + az)t) - c 2 sin a(z + ~')t i sin2trlt/2 
J 

~roa(( 2 _ ,q2/f12)2 _I_ 4 ~  1 V / ~ 2 / o ~  2 - 1)r/3 
(A6) 

_ (2c~ce e -  Itl,.~z _ (2 - C2/fl2)e Itl~ez)(2c~cee-ttlc.; _ (2 - C2/fl2)e Itlca¢) sin2tCRt/2 

uzz = pK(CR)C e It I 

+ 4f,~ c2(4a2b2e -a(z+ ¢ltl q_ 2abc(e itl~z sin b~'lt1-4- e-It14- sin bzl t l )  - C 2 COS b(z + ~'lt I)) sin2t~/t/2 d 

7rob((2 - -  n 2 / f 1 2 )  4 -]- 16(~/2/fl 2 -- 1)(1 - -  ~ 2 / o L 2 ) ) n 3  

_ 16~e a(c 2 sin b(z + ~')ltl + 2abc(e-Itl~z cos b~'ltl + e Itia~ COS be t ) ) s in2 t~ t /2dn  
a'p((2 - r / 2 / f12 )  4 Jr- 1 6 ( ' q 2 / f l  2 - 1 ) ( 1  - -  ' r /2 /oz2)) 'q  3 ] t ]  

4 f= (4a2b 2 cos a(z + ~)t + 2abc( cos(b~" + az)t + cos(bz + a~')t)  + c 2 cos b(z + ¢)t sin2tr/t/2 

Jo @ .d~ 
7 r p b ( ( 2  - ~ 2 / f l 2 ) 2  -{- 4 ~2/X/7~ C- 1 V/n2/o~ 2 - -  1 )17 3 

(A7) 

- (2e ttic~z _ (2 - C~/fl2)e -Itlc~z)(2c~cee-Itl,.~i- _ (2 - C2//52)e Iticei-) i sin2tCRt/2 

gtxz = p K ( C R )  t 

f ~  9 2 4c2(4abe Iti~{a+ ~-) + 2c(e-Itiaz sin b~'ltl - abe-itl~" cos bat )  - c 2 sin b(z + ~')lt I))i s in- t r / t / -d~ 

+ ~ t ~ rp ( (2 -  ~ 2 / f l 2 ) 4  ..[_ 1 6 ( . q 2 / f 1 2  _ 1)(1 - ~ 1 2 / 0 ~ 2 ) ) r 1 3  

+ 1 6 r  ab(c2 cos b(z + ~)t - 2 c ( e -  Itl~z cos bzt + abe Itia¢ sin bzlt I)) i sin 2 t n t / %  

4 (~  (4ab sin a(z + ¢)~ + 2c(sin(az + b~)~ - ab sin(a~" + bz)~) - c 2 sin b(z + ~')~ i s in2~n t /2  
+ J frO((2 - r / 2 / f12 )  2 q -  4 ~ k / / ~  - 1 V/r/2/oL 2 - -  1 )r] 3 

(A8) 
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the p-plane. Based on the residue theory, the following 
holds (see Ref. 21) 

= 2rri Res - Ir - Ir~ - f t .  --fFc--frD 
--ffrA --j~rB,--frc,--j~lPD ' (A4) 

It can be shown that the integrals along the contour I" 
become zero as the radius R tends to infinity. 

After some manipulations, the expressions A5-A8 are 
obtained 
where 

a=~//l~2/oe 2 -  11 

b=v / [~2 /32-  11 

c=2- -~2 /3  2 

c= : V/1 - C2/o~ 2 

(All)  

(A12) 

(A13) 

(A14) 

c R 1 e 3 1 c~'~ 
K(CR) = C~ 32 ee 2 c~ 32 c~J (A9) 

and 

e~ = V/1 - c ~ / 3  2 

c R = 2 - C 2 / 3  2 

(A15) 

(AI6) 
x j=(- -1)Jx  ( ]=0,1)  (AIO) 


