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A comparative modelling of a flexible rotating beam has been considered in this study.
The dynamic model is based on a beam with either isotropic material or composite material.
The composite beam is considered as orthotropic fiber-reinforced and symmetrically
laminated. Both small lincar as well as geometric non-linear deformations are studied.

A continuous system is considered in the analytical approach. Both axial and transverse
deformations are included, and they are represented by the mode shape functions of the
beam. The coupled effect between the rigid body motion and the flexible motion is also
considered. A forward dynamic numerical simulation is performed for a prescribed driving
torque on a steel and graphite/epoxy beam. The influence of flexibility on the rigid body
motion is presented and discussed. From the numerical results, the composite material has
a lower energy consumption due to lower material density. It performs well in damping
the vibration of the structure due to its higher stiffness-to-weight ratio.

1. INTRODUCTION

Dynamic modelling of flexible mechanical systems has arisen in the past two decades. In
advanced machine design, accurate models for studying elastic deformations and rigid
motion of continuous, elastic bodies are becoming increasingly important. The problem
of an elastic appendage on a rotating base is the simplest model in the stedy of beam-like
structural dynamic analysis. Although the model is simple, it has initiated many research
investigations. The analysis of free vibration characteristics of a rotating beam has been
studied in references [1-5]. Most of these analytical studies place the emphasis on the
critical speed, Other applications of the rotating flexible beam are one-link robotic
manipulator systems [6—10], where the emphasis is based on predicting the deflections at
the end of the manipulator. Furthermore, flexible beam elements in flexible multi-body
mechanical systems can be categorized as another group of problems [11--14], such as the
open loop chain system and closed loop mechanisms.
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Two types of methodologies have been developed for the dynamic analysis in this area:
in the first one, an analytical technique [15-19] solves separately for rigid motion and
elastic deformation. The fundamenta! assumption in this approach is that small elastic
motion is initially considered to have no effect on the rigid body motion. Inertial forces
developing from the rigid motion play a dominant role in the flexible mation. The overall
configuration is derived by superimposing the flexible response on the rigid body motions.
This is not an accurate model when the mechanical system is subjected to high speeds. In
the second methodology, a more accurate model [14] couples the rigid body motion and
flexible motion. Rigid body motion and elastic deformations are solved simultaneously.

Generally speaking, research in this area can be divided into two categories. The first
treats the elastic links of the mechanical system as a continuous system [20-24]. The
equations of motion for these continuous systems are derived with the help of certain
simplifying assumptions and solved to obtain the system response. In the second category,
the elastic links of the system are modelled as discrete systems via finite element
formulations [25-29]. The advantages of the finite clement formulations are that they
provide an easier and systematic modelling technique for complex mechanical systems. The
drawback of the second method is the requirement of substantial computer time simulation
due to the many degrees of freedom in the system. However, modal synthesis can be
utilized to reduce the degrees of freedom. In addition, the accuracy of the dynamic
tesponse depends on the selection of the modal degrees of freedom (30, 31].

Most of the research done in this area is based on the assumption of small deformations
of the flexible members, thus neglecting the effects of geometric non-linearity. The need
to consider geometric non-linearity has prompted the development of many solution
techniques for non-linear structural analysis. Geometric non-linearity occurs when the
deflections are large enough to cause significant changes in the geometry of the structure,
In some research, models have been developed that consider the geometric non-linearity
in different mechanical systems [32-36]. However, most of these works do not evaluate for
rigid motion and elastic motion simultanecusly [32-34]. Bakr and Liou [35, 36] considered
rigid body motion and flexible motion simultaneously in four bar and slider mechanism
systems,

As mentioned before, most studies in this area consider the flexible bodies built with
isotropic materials. Recently, an alternative philosophy has been proposed for the design
of flexible multi-body systems which requires the members to be fabricated with advanced
composite materials [37—-43). Generally speaking, composite materials possess much higher
strength-to-weight and stiffness-to-weight ratios than those of metals. Consequently,
systems made of composite materials experience much smaller deflections when subjected
to loads.

This study pertains to the comparative modelling of a rotating flexible beam structure.
The flexible beam is attached to a rotating base and the other end is free. The beam is
considered with isotropic and composite material under the assumption of linearly small
or geometrically non-linear deformation. There are four totally different models: linear
deformation with isotropic material (LI), geometric non-linearity deformation with
isotropic material (NLI), linear deformation with composite material (LCP) and geometric
non-linearity deformation with composite material (NLCP). In order to consider the
non-linear elastodynamic model of the system, the forward dynamic simulation is
performed by applying a prescribed driving torque to a steel and to graphite/epoxy beam
models. The responses of the transverse deformation and the influences of the flexibility
on the rigid body motion are presented and discussed. It can be shown that the composite
material has a lower energy consumption due to lower material density. It performs well
in damping the vibration of the structure due to its higher stiffness-to-weight ratio.
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2. ANALYTICAL BACKGROUND

The general analytical method of this type of problem has been well developed and
proven to be suitable for analyzing mechanical systems subjected to kinematic constraints
[14). Two sets of generalized co-ordinates are employed to describe the configuration of
the flexible body. One set are the reference generalized co-ordinates which define the
location and orientation of a beam-fixed co-ordinate system on the beam, and the other
set are the elastic co-ordinates which define the deformation of the beam with respect to
the beam fixed co-ordinate system. The elastic deformations are introduced using the
deformed shape functions and the time dependent generalized co-ordinates. The kinetic
energy is obtained by integrating the kinetic energy of an infinitesimal element over the
volume of the beam, while strain energy is derived in specific modelling. The quadratic
terms in the strain-displacement relationship for linear small deformation are neglected.
On the other hand, the gquadratic terms are retained in the derivation of the strain energy
for the geometric non-linear deformation. The equations of motion are derived through
Lagrange’s formulation [14]. Due to the coupled effect of rigid motion and elastic
deformation, the equations of motion are non-linear, with time-dependent coeflicients.
Since the inverse dynamic analysis is impossible without simplifying the coupled effect, the
forward dynamic simulation is implemented by a prescribed driving torque.

2.1. KINEMATICS

The configuration of the flexible beam system is illustrated in Figure 1. Let the X-Y
co-ordinate system represent the inertial reference frame and the x—y system represent the
beam-fixed co-ordinate frame. The global position of an arbitrary point P on the flexible
beam can be expressed as

r,=Af, (1)

where T is the local position vector of point P in the deformed state (the bar represents
the vector with respect to the beam-fixed co-ordinates system) and A, is the transformation

matrix, defined as
cos@ —sinf
A= [sin 8 cos@ ] (2)

The position vector F can be written as

i'=i-!0+ﬁfs (3)
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Figure 1. The general configuration of the flexible beam.
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where @, is the position vector of point P in the undeformed state and ii, is the deformed
position vector of point P with respect to the beam-fixed co-ordinate. The deformed
position vector ii, can be represented by

md
i Z ’Pm'Qal'(t)
&= {v} = :Z; : @

D,q.(t)

where 7 and ¢ are the axial and transverse deformations, respectively, with respect to the
x~y co-ordinates; ¥, and ¢, are space-dependent shape functions and can be selected as
the mode shape functions of the free axial and the free transverse vibration, respectively;
¢.:(t) and g,(¢) are the time-dependent elastic generalized co-ordinates of the deformable
beam and md is the number of modes. Equation (4) can be written as

i qal h
QaZ
e Yo e O 0 o] '
u-= amd
! [0 0 - 0 ¢£1 ¢12 d)tmd'4 qn & (S)
4
\ Gima J
or, in a simplified form,
= [Sl{q,} ()

where [S] is the shape matrix and {q ,} is the vector of the elastic generalized co-ordinates.
The overall generalized co-ordinates of the beam can be expressed as

{a} = {0, {a}"}", 0

where 6 is the rigid angular displacement.
The velocity of an arbitrary point P can be obtained by differentiating equation (1) with
respect to time,

t,=L,{4}. ®
where {q} is the generalized velocity vector of beam and L, is defined as
L.=[B AS] &)
in which
[ e,

2.2. XINETIC ENERGY
The kinetic energy of the beam is given by

T=1p ji‘,{i-pdV, (1
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where p is the constant mass density and I, is the global velocity of an arbitrary point P
on the beam. Substituting equation (8) into equation (11} yields

T =;4™4, (12)
where
M = ['"” m”f], (13)
and
Mgy = p j‘BTB dV, my=p jBTA, SdV, my=p JSTS dv. (14)

In this study, the kinetic energy expression in equation (12) is the same for all cases under
the assumption of constant mass density along the beam.

2.3, STRAIN ENERGY

The strain energy is not given by the same expression for the linear deformation and
the geometric non-linear case. For linear deformation, the quadratic terms in the
strain—displacement relationship are neglected. However, the quadratic terms have to be

retained in considering geometric non-linearity. The strain energy is obtained for the linear
and the non-linear cases, separately,

2.3.1. Small deformation with isotropic material
The strain energy of the elastic beam is given by

|
U=§Jexade. (15)
Neglecting the quadratic terms, the strain-displacement relation is given by
i %
=——y— 1
&= TV a (16)

where # and & are the displacements vector along the centroidal axis.
Assuming a linear stress—strain relation and substituting equation (16) into equation
(15), one obtains

i H
U=1EA '[ (Pa/ox)* dx + %EI_[ (6% /ax?? dx, (17)
0 0
where E is Young’s modulus, 7 is the moment of inertia and A is the cross-sectional area.

2.3.2. Large deformation with isotropic material
The strain-displacement relation including the quadratic terms is

di 8% 1{dn\? .
C,——a*_}’gp‘{-z(é}). (].8)

Substituting equation (18) into equation (15) yields

1 T (oa\ A AT W AN 1 FOEAL
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Figure 2. General configuration of the kth layer of the composite beam,

2.3.3. Small deformation with composite material

The general configuration of a compaosite beam is depicted in Figure 2. The relationship
between stress and strain for a particular layer k in the local X—Y co-ordinate system can
be expressed as

O-X eX
ot =10 ¢, |, (20)
1'-xy 'ny

where the [QI® matrix denotes the transformed reduced stiffness. The elements of [Q]y,
depend on the fiber angle between the local co-ordinate and the principle co-ordinate
systems, as well as the engineering constant [44]. Based on classical lamination theory, the
strain energy can be expressed by

0 0

U= % j ' [A,, @i/oxy dx + D, j t (azﬁ/ax’)z] dx, 29)

TABLE 1

Material properties and geometric parameters

Material properties Graphite/epoxy Steel
E, (Msi) 20 30
E, (Msi) 14 30
G\, (Msi 0-8 11-81

Vi 03 027
h (in) 0-005 025
Elp (107 in) 3333 10-6
£ (Ibm/in®) 0-06 0283
Geometric parameters, both materials
Length 60 in
Width 0-751n

Thickness 70-25in
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Figure 3. The angular displacement of the rotating steel beam: ——, rigid; @—@—@-@, linear; A-A-A-A,
non-linear.

where
A11=b z Q(lj?(hk'"hkml), D11=b z %Q??(hz“'hi—l) (22)
k=1 K=l
with r pertaining to the number of layers; b is the width of the beam.

2.34. Large deformation with composite material
In a similar fashion, the strain energy can be expressed as

1! aa '\ di for\ 1 oo \* T7o%\?
UZEJ.O [An(g;) dx +D]1‘a—;(é;> +ZA||(§;) +A11J‘0 (@):‘dx. (23)

Substituting equation (6) into the strain ¢nergy equations (17), (19), (21) and (23), one
can express the strain energy in terms of the generalized co-ordinate vector {q,}. By
comparing the strain energy with the Jinecar deformation and the geometric non-linear
deformation, it can be realized that the two additional quadratic terms are attributed to
geometric non-linear deformation. Shabaha [35] and Liou [36] neglected the fourth order
term in the strain encrgy shown in equation (23) due to the tedious computations in the
finite element approach. Following the procedure suggested in this paper, the fourth order
term does not lead to very cumbersome computations, and is retained in the formulation,

2.4. GENERALIZED EXTERNAL FORCES

The principle of virtual work can be applied to derive the generalized external forces.
The external forces in the rotating beam that can be considered in this study are the
gravitational force and driving torque. However, any type of external force can be included
following the same approach. The virtual work of all external forces acting on the beam
can be written in matrix form as

W = 5.'(6) < (R0 24

where F,o and {F,}f are generalized force vectors associated with the rigid and the elastic
generalized co-ordinates, respectively.
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The system equations of motion can be obtained by using Lagrange’s formulation

d /6T\T T\T SUNT
a(ﬁ) ‘(5&) *(ﬁ) =¥ @

By performing the operations indicated in equation (25), the equations of motion can be
expressed in matrix form

[m.w(q,r) m.gf(q,r)]{é} +[0 o]{e}z {f;g(q,r)}+ {Qw(q,q,:)} 6
mp(q, 1) mg(g, 1) 1§, 0 Kgllgy Flq,0) 0,0, 4, 0§
or in the c¢oncise form

Mg, )1{4} + Kl{q} = {F.(q. )} + {Q.(a. 4, )}, (27}

where Q,(q, q, ¢) is the quadratic velocity vector resulting from differentiating the kinetic
energy with respect to time and with respect to the body co-ordinates.

3. NUMERICAL RESULTS

A representative numerical example is provided in this section, to elucidate the relative
significance of each model. The steel beam and the graphite/epoxy beam are selected to
illustrate the performance of an isotropic and a composite material. The material
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Figure 4. The angular velocity of the rotating steel beam. (a) —, Rigid; @-@—@-@, linear. (b) —,

Rigid; A—A—4&-4&, non-linear.
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Figure 5. The angular acceleration of the rotating steel beam. (a) ——, Rigid; @-@-@®-@®, lincar. (b) —,

Rigid; &—4A—A—4A, non-linear.

properties and the geometric parametric parameters of the beams are listed in Table 1, in
which E, and E, are the Young’s modulus in the 1- and 2-axis directions (defined in Figure
2), G\, ts the shear modulus in the 1-2 plane and v, is the Poisson ratio for transverse strain
in the 2-direction when stressed in the 1-direction. Both axial and transverse deformations,
with one mode shape function, are considered.

Due to the coupled effect between rigid body motion and elastic deformation, the
equations of motion are non-linear, the non-linearity being attributed to the dependency
of the mass matrix on the time-dependent generalized elastic co-ordinates. In lingar
elastodynamics theory, the effects of the generalized clastic co-ordinates on the mass matrix
are neglected such that the inverse dynamic analysis can be applied to a specific prescribed
motion. However, this simplification can cause inaccuracy in simulating the dynamic
behavior of the system. In order to maintain the equations of motion with the time
variation of the mass matrix, the forward dynamic procedure is performed without any
simplifications. The beam rotates under a prescribed torque in horizontal plane without
any other external load. The prescribed torque is given by

4t lbin, 0t g2,
T(t)=¢81bin, 21 <4,
8—4¢1bin, 416,
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and the total simulation time is 6 seconds. A small integration time step must be selected
in order to obtain an accurate solution for such type of stiffened system. The
predictor—corrector Adams-Bashforth-Moulton algorithm is used in this example [45].

The responses in terms of angular displacement, velocity and acceleration of the steel
beam in rigid motion, linear small deformation, and geometric non-linear deformation are
shown in Figures 3 to 5, respectively, The corresponding responses of the graphite/epoxy
beam are shown in Figures 6 to 8. The influences of flexibility on the angular displacernent
and veloeity are minimal. It is convenient to illustrate the results of Figures 3, 4, 6 and
7 individualily. The left-hand y-axis indicates the rigid motion response and the right-hand
y-axis indicates the variations between flexible and rigid motion. The high frequency
responses of angular velocity and angular acceleration are due to the effect of high stiffness
of the beam. It is observed that, as shown in Figure 3, the total angular displacement of
the steel beam is about one and half revolutions. On the contrary, the total angular
displacement of the graphite/epoxy beam is about seven revolutions. Less energy consump-
tion is required for composite beam if the same angular displacement occurs. This is
because the steel beam has a much higher mass density and the angular displacement for
a given torque is inversely proportional to mass density. The mass density of steel is
0-283/0-06 = 7-717 times greater than that of graphite/epoxy. The angular displacements
of the steel and the graphitefepoxy beam arc 1'5 and 7 revolutions, respectively. As a
matter of fact, 7/1-5 = 4-667 is essentially the same as the mass density ratio of 4-717,
Therefore, the effect of the elastic deformations on the moment of inertia is small. The
flexibility affects the angular acceleration, especially for geometric non-linearity defor-
mation motion for both materials. The sources of angular acceleration oscillations come
from the Coriolis acceleration Q,, and the inertial forces [my]{g;} (see equation (26)). It
is worth mentioning that the generalized co-ordinates & are related to the rigid body

“motion.

As shown in Figures 9 and 10, the transverse deformations are dominated by a forcing
funetion which is mainly caused by the inertia input torque [24]. In the LI modelling shown
in Figurés 5_ar;_d'._9, the beam, subjected to a maximum angular acceleration of 0-8 rad/s?,
experiences a maximum deformation of 0-28 in. However, in the LCP modelling shown in
Figures 8 and 10, the corresponding angular acceleration and maximum deformation are
4 rad/s* and 0-45 in. The angular acceleration from the LCP model is five times higher than
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Figure 6. The angular displacement of the rotating graphite/fepoxy beam: ——, Rigid; @-0-9-@,

linear; A—A—4A-4A. non-linear.
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Figure 7. The angular velocity of the rotating graphite/epoxy beam. (2) ——, Rigid; §-@-@-®, linear.
(b) ——, Rigid; A-A-A-A. non-linear,

that of the LI model, but the maximum deformation is about twice as great as that from
the LI model. This can be attributed to the high stiffness-to-weight ratio in composite
materials. Passive control in damping the vibration of the structure can be achieved when
composite material is selected. The maximum deformation in the linear deformation model
is about 50 percent greater than in the geometric non-linearity deformation model, for both
materials. Therefore, the correct mathematical model is indispensable for a more accurate
analysis of realistic flexible structure systems.

4, CONCLUSIONS

Comparative modelling of a flexible rotating beam has been studied in this paper. The
dynamic models describe a beam with isotropic material and composite material, subjected
to small linear deformation and geometrical non-lincarity deformation, respectively. The
composite beam is considered as orthotropic fiber-reinforced and symmetrically laminated.
The methodology is applied to the study of different model combinations: (a) linear
deformation with isotropic material (LI); (b) geometric non-linearity deformation with
isotropic material (NLI); (c) linear deformation with composite material (LCP); and (d)
geometric non-linear deformation with composite material (NLCP).
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Figure 8. The angular acceleration of the rotating graphite/epoxy beam (a) ——, Rigid; §-@~@—-@, lincar.
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The coupled effect between the rigid body motion and the flexible motien is also
considered. The equations of motion are non-linear with time-dependent coefficients. They
are expressed in terms of the elastic generalized co-ordinates and the large angular
displacement of the beam. The forward numerical simulation is performed for a prescribed
torque driving the steel and graphite/epoxy beam. The transverse deformation responses
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Figure 9. The end-paoint deformation of the rotating steel beam: @-@—@-®, lincar; A—A— A~ A, non-linear.
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and the influence of flexibility on the rigid body motion are evaluted and discussed. For

th

e composite matenial, it is shown that it has lower ¢nergy consumption due to lower

material density. It performs well in damping the vibration of the structure, due to its
higher stiffness-to-weight ratio.
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