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Abstract-This work deals with the development and presentation of a frequency domain hybrid 
numerical method for determining the dynamic response of surface strip-foundations under conditions of 
plane strain placed on an elastic soil medium and subjected to either externally applied forces or seismic 
disturbances. The elastic, isotropic, and homogeneous soil medium is treated with the boundary element 
method, while the flexible and massive foundation is treated with the finite element method. The two 
methods are appropriately combined through equilibrium and compatibility conditions at the 
soil-foundation interface. Several numerical examples are worked out to demonstrate and attest the 
efficiency and accuracy of the method. 

1. INTRODUCHON 

In recent years, the dynamic response of two and 
three-dimensional footings placed on a linear elastic 
half-space and subjected to external dynamic loads 
has been investigated extensively. The loads may be 
either a harmonic force excitation, as in the case of 
machine foundations, or a seismic load (specified 
either as base acceleration or prescribed free field 
displacements) represented by their frequency con- 
tent. In these cases the analyses are performed prefer- 
ably in the frequency domain. Furthermore, under 
these loading conditions, the analysis and design 
must account for the interaction between the foun- 
dation and the soil, since the soil-foundation 
interface moves or distorts differently from the corre- 
sponding surface in the free field. The response of the 
structure+foundation system is influenced by the soil 
which exhibits an essential feature, the geometric 
damping. This is due to the fact that waves travel out 
to infinity resulting in energy dissipation even if the 
soil is assumed to consist of a purely elastic material. 

Several computational procedures are presently 
available to obtain dynamic impedance functions and 
the foundation response for each specific problem [l]. 
In boundary value problems, the boundary element 
method (BEM) presents several advantages over 
domain methods when analyzing viscoelastic homo- 
geneous media with a large volume-to-surface ratio. 
Such advantages include reduction of the problem 
dimensionality by one, consideration of the radiation 
condition at infinity and enhancement of numerical 
accuracy [2]. The BEM has been applied to the 
general soil structure interaction (SSI) area of 

TPortions of this work have been presented at the 2nd 
National Congress on Mechanics of the Hellenic Society for 
Theoretical and Applied Mechanics (HSTAM), Athens, 
June 1989. 

research through either a frequency or a time domain 
formulation. Cruze and Bizzo [3] presented a fre- 
quency domain BEM formulation of general two- 
and three-dimensional elastodynamic problems. 
Niwa et al. [4] and Banaugh and Goldsmith [5] 
applied a frequency domain BEM to study steady- 
state wave propagation problems. Ottenstreuer and 
Schmid [6] studied the problem of cross-interaction 
between two rigid surface foundations. Antes and v. 
Estorff [7] presented time-dependent BE procedures 
to treat general two-dimensional elastodynamic prob- 
lems under arbitrary initial conditions and body 
forces. Antes’ research was restricted to rigid-type 
foundations. 

The versatility and accuracy of the finite element 
method (FEM) in analyzing finite domains is well 
established [8,9]. In treating SSI problems, however, 
FEM poses distinct disadvantages over BEM, stem- 
ming from its inability to appropriately model semi- 
infinite soil media [lo, 1 I]. In order to take advantage 
of the merits of both methods, it is preferable to treat 
the finite size structure with the FEM, the supporting 
semi-infinite soil with the BEM and combine the two 
methods through appropriate equilibrium and com- 
patability conditions at the soil-foundation interface. 
Adopting a hybrid approach, analysis and design 
are not restricted to simple-geometry structures or 
undamped systems, but can be extended to composite 
structures, multiply-connected structural systems 
and also account for viscous or hysteretic 
damping [12-181. 

Several authors have studied the problem of 
obliquely incident waves impinging on a rigid or 
flexible foundation. Wong and Luco [19] were the 
first to study the dynamic response of a rigid massless 
rectangular foundation, while Whittaker and Chris- 
tiano [20] studied the case of flexible surface foun- 
dations. Dominguez [21] applied a frequency domain 
BEM to the study of rigid massless foundations and 
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Antes and Spyrakos [22] analyzed the response of 
massive blocks to transient Rayleigh waves using the 
time domain BEM. 

In this work two separate formulations are pre- 
sented in order to study the cases of externally 
applied harmonic loads and harmonic seismic wave 
excitations. The salient features of the frequency 
domain BEM-FEM are compared with approxi- 
mations commonly adopted by analytical/numerical 
approaches or purely numerical FEM methods. Para- 
metric studies examining the effect of the relative 
stiffness and relative mass between the foundation 
and the soil, and the spatial distribution of the 
dynamic disturbances on the foundation response are 
presented. The work at hand is one of the initial 
attempts to investigate the dynamic behavior of 
strip-plates accounting for both the foundation 
flexibility and inertia [23]. 

2. FORMULATION AND NUMERICAL 
IMPLEMENTATION 

The sequence of presenting the hybrid BEM-FEM 
formulation, as can be applied to elastodynamic 
problems, consists of three steps. Namely, the devel- 
opment of an integral equation corresponding to 
Navier-Cauchy equations and boundary conditions 
of an infinite linear elastic or viscoelastic medium; 
the development of the differential equations and 
boundary-initial conditions associated with the finite 
domain; and the numerical treatment of the govern- 
ing integral and differential equations with the aid of 
the BEM and FEM, respectively. Herein the infinite 
medium is the soil, while the system of finite dimen- 
sions is the overlaying foundation, as shown in Fig. 1. 

2.1. Basic theory 

Consider a homogeneous isotropic and linear elas- 
tic body R with boundary S subjected to body forces 
6(x; t). In steady-state elastodynamics the displace- 
ment vector associated with each point x E R + S is 

Fig. 1. Geometry, loading and material constants of the 
soil-foundation system. 

given by I(x; t) = u(x; w)eio’. Under the assumption 
of small displacement theory and for plane strain 
conditions, the elastodynamic displacement field of 
body R is governed by Navier’s equation of equi- 
librium [24], 

bi <c: - c:)uj,ji + c:ui,j + - 
Ps 

=k2uj-ku,,-u,i (i,j=l,2), (1) 

where k = io(i = fl), o is the circular frequency 
of the problem, uoi(x) and uoi(x) are the initial dis- 
placement and velocity, respectively, and 6.(x; k) are 
the Laplace transforms of 6;(x; t), which are the 
components of the body force per unit volume. In the 
above equation, c, and c2 are the dilatational and 
shear complex wave velocities, respectively, given in 
terms of the modulus of elasticity E,, Poisson’s ratio 
v, and mass density p, by, 

and 

where the subscript s indicates that the elastic con- 
stants refer to the soil. In eqn (2) [, and lz denote the 
ratios of the linear hysteretic damping for P- and 
S-waves, respectively. Linear hysteretic damping is 
independent of the frequency of excitation, o, and 
can be introduced into the solution, when working in 
the frequency domain, by using the correspondence 
principle [25]. The latter states that the damped sol- 
ution is obtained from the elastic one by replacing the 
elastic constants by the corresponding complex ones. 
Hysteretic damping does not fulfil the causality 
requirement, a necessary condition to apply the cor- 
respondence principle. Nevertheless, its use leads to 
reasonably accurate results for very deep soil deposits 
and halfspace soil idealizations [ 1,261. In the present 
work it is assumed that the damping coefficients for 
the two waves are equal, which implies that the 
Poisson’s ratio is real, and [, will refer to the soil, 
while if to the strip-foundation. 

For the general case we have to consider a mixed 
boundary value problem with boundary conditions, 

DI(x)ui(x; k, + B(x)ti(x; k) = Y(x), x E Sg (3) 

ui(x;k)+O and ti(x;k)+O, XES,, (4) 

where S = S,u S,, as shown in Fig. 1; 
x(x), /3(x), y(x) are known functions on S,, and 
t,(x; k) are the traction components on the boundary. 
It must be pointed out that condition (4) is valid only 
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when the domain R extends to infinity in the half- 
plane. The solution of eqn (1) is given by the follow- 
ing integral representation [27], 

&(Q; k) = 
s 

lj(P; R)Uij(P, Q; k) dS(f’) 
S8 

- 
s 

uj(f’; k)7’<j(P, Q; k) dS(P) 
% 

+ bj(P; k) 
ps + kuoj(P) + voj(P) 

X uij(P, Q; k) dA (P>, (5) 

where dA(p) is an area element at a field point 
p(x) E R and dS(P) is an element on the boundary 
at a field point P(x) E S. The arguments of elements 
dA and dS denote the point which varies 
during integration. The fundamental solutions Uij 

(P(X), q(C); k) and Tij(p(X), q(t); k) express dis- 
placement and traction components, respectively, in 
the xj-direction at the observation point p(x) at a 
distance r = Ix - { ) away from the source point q(c), 
due to a concentrated unit load acting at q(r) in the 
x,-direction. The two-point tensors U, and Tij are 
given explicitly by the following formulae [24] 

(6) 

tjjr*i-2r,ir .J? 
.’ aij > 

-2$r,ir,,$ 

where 

+ti-2)rd -g -F)r,iq,j], (7) 

and 

r = [(xi - I.$)(x, - &)]“* (i = 1, 2). (10) 

In eqns (8) and (9) G(z), K,(z), J2(z)(z ~1) are 
modified zero-, first- and second-order Bessel func- 
tions of the second kind, respectively. Definitions 
and properties of the modified Bessel functions 
Ki (i = 0, 1,2) can be found in various sources, e.g. 
[28,29]. Equation (5) can be viewed as a constraint 
equation between the transformed traction vector 
and displacement vector on the boundary and the 
transformed body force in the interior of the body. 

The second constituent of the soil-structure system 
is a massive flexible strip-foundation in complete 
bond with the soil. On the basis of the Bemoulli- 
Euler beam theory, the axial and flexural motions of 
a unit width of the strip-foundation are governed by 
the following uncoupled equations [27] 

E,hv; + p,hw*v, = -(p, - t2,) (11) 

and 

Dfv;,, - p/ho*v, =p2 - rZ2, (12) 

where v, = v1 (x,; k) and v2 = v,(x,; k) are the ampli- 
tudes of the axial and the flexural motion, respect- 
ively. In the above equation p, (x,; k) and p2 (x,; k) are 
the amplitudes of the externally applied harmonic 
forces, while r,,(x,; k) and r,,(x,; k) are the contact 
stresses applied on a unit width of the foundation. 
According to the correspondence principle [25], 
material damping has been taken into account by 
introducing the complex modulus of elasticity, 
,!$= &l + 2&i) and the complex flexural rigidity, 
D,= E’h3/12(1 - vj), with h, v, and & denoting the 
thickness, the Poisson’s ratio and the damping co- 
efficient of the linearly elastic foundation, respect- 
ively. Evaluation of the flexible foundation response 
can be obtained by numerical solution of the system 
of eqns (5), (11) and (12) with the associated bound- 
ary and initial conditions. 

2.2. Numerical treatment 

In this investigation the boundary integral eqn (5) 
can be discretized by dividing the boundary 
S, = S,u SC of the soil surface into an M = M, + A4, 
number of boundary elements. The soil-foundation 
contact area SC is divided into MC elements, while 
the free soil surface S, is divided into IU/ elements, as 
shown in Fig. 2. The elements are not necessarily 
equal, they are numbered consecutively from left to 

Z 
2b t Finite element 

, discretization scheme 

- N/ 
1 2 j / (l) (2) 

(N-1)/ j+l j+2 Sf x1 
* 

MC 

Sf Boundary element Sf 
discretization scheme 

Fig. 2. Typical BEM-FEM discretization. 
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right and the nodal points are placed at the center of 
the corresponding boundary elements. The values 
of the boundary displacements ui and tractions 
tj (i = 1,2) are assumed constant over each element 
(step function assumption) and equal to their values 
at the nodal point of the element. 

Under the assumption of zero body forces and 
initial conditions, eqn (5) can be written in the 
following form, 

where m, n = 1,2,3,. . . , M, 

and 

(14) and (15), respectively. Furthermore, eqn (16) can 
be rewritten in the following partitioned form as 

where the subscripts c and f designate elements on 
the soil-foundation contact surface and on the free 
surface, respectively. Applying the boundary con- 
dition (t,} = {0}, i.e. the part S, of the soil surface is 
traction free, in eqn (17) one can easily eliminate the 
free-surface displacements and obtain a stiffness 
equation of the form 

where 

^ ^ 
PI = ([Gccl - [K,lF+,-W,cl)-’ 

1 I u,, 6, La; k) dW s U,,k 4,; k) Wx) 
K&t,= ’ 

” 

I s 

(14) 

%(x, L; k) dW) i&(x, 4,; k) dS(x) 
n n 

w1,, = 

I 

s 
T,,(x, L; k) dS(x) 

n s 
T,z(x, L,; k) dW) 

n 

s 

(15) 
Tz 6, L,; k) Wx) Tdx, L; k) dS(x) 

n 

In the above equations &,, denotes the spatial vector 
of node m, where the solution point is positioned and 
x, is the spatial vector of the variable node n. The 
integration point x in eqns (14) and (15) varies along 
the n element and when m # n(r # 0) the line integrals 
are regular and can be evaluated using any of the 
known numerical techniques for the evaluation of 
line integrals. However, when m = II the argument r 
vanishes when x = e and the values of the singular 
integrals are established by a limiting process for 
r + 0. In this investigation these line integrals are 
computed using the technique presented in [27]. 

Equation (13) can be written for every boundary 
element m = 1,2,3, . . . , M, in which case the result- 
ing system of 2M simultaneous linear algebraic 
equations can be cast in a matrix form as 

[filb4 - WitI = PI, (16) 

where [fi] = [H] +f[Z], and the entries of the 
(2M x 2M) matrices [H] and [G] are given in eqns 

Equation (18) constitutes a system of 2M, equations 
in 4M, unknowns. The additional 2M, equations 
which are required to establish the unknown bound- 
ary displacements and tractions are derived from 
the equilibrium and compatibility conditions at the 
soil-foundation interface and have the general form 
of eqn (3). 

(i) Externally applied loaak The strip-plate 
dynamic stiffness matrix can be obtained from the 
expressions presented by Spyrakos and Beskos [30], if 
the beam rigidity EZ is substituted by the strip-plate 
rigidity D,. The advantage of the dynamic stiffness 
influence coefficients is their ability to capture inertia 
effects more accurately than conventional finite 
element procedures using stiffness matrices derived 
from static FEM formulations. On the assumption 
that each finite element of the discretized foundation 
model must be in contact with two successive bound- 
ary elements of the supporting soil, the strip-plate is 
divided into MC/2 finite beam elements (M, even), 
introducing in this way N = MC/2 + 1 nodal points. 
Thus, through standard finite element procedures, 
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eqns (11) and (12) can be expressed in a partitioned 
form as 

12Q) 

in which [K,], [K,,], [&I and [Keel are the sub- 
matrices of the total dynamic stiffness matrix, (8) and 
{0} represent the nodal displacement and rotation 
vectors, {P} and (M} are the nodal external loads 
acting on the strip-foundation and (R 3 is the vector 
of the nodal forces associated with the contact 
stresses. 

Coupling of the matrix eqns (18) and (20) requires 
correspondence between nodal displacements and 
tractions as specified by BEM and FEM approxi- 
mations. In order to introduce compatibility between 
the deflection of the structure and the soil motion 
at the interface, the displacement of each node of 
the finite element discretization scheme is assumed 
to be equal to the displacements developed over 
two successive boundary elements joined at this 
node (Fig. 3a). Similarly, compatibility of forces 
can be established if each contact force {R},,, 
(m=1,2,..., N) applied at node m of the strip- 
foundation, is approximated by the resultant of 
the two forces associated with the contact stresses 
that develop over the two contiguous elements 
whose common extreme point coincides with node m 
(Fig. 3b). Therefore, for the whole interface region, 
the compatibility conditions can be expressed as 

and 

{u, 3 = [CI’C~ > (21) 

{R} = KlPl{GL (22) 

where the entries of the (2N x 2M,) matrix [C] are 
either 0 or 1, [r] is a (2M, x 2A4,) diagonal matrix 
consisting of the boundary element lengths 
li (i=1,2,... , MC) and the superscript T denotes 
matrix transposition. 

Vl'LU, =lJ, (j) (j-11 

"$1 = "j' = "$1) 

Equations (18)-(22) form a system of linear 
algebraic equations, which can be solved for the 
unknown displacements (u> and rotations (0) to give 

and 

(ii) Obliquely incident seismic waues. Consider 
now the same foundation in complete bond with the 
supporting elastic half-space and subjected to seismic 
waves propagating in a direction parallel to the 
x1 x2 -plane. By adopting the procedure suggested by 
Thau [31], the total displacement field {u} can be 
decomposed into two parts: the free field due to the 
impinging seismic waves, and the scattered field 
generated by the motion of the foundation in the 
absence of any seismic excitation. This is expressed 
mathematically by 

where the superscripts F and S are used to indicate 
the displacement vectors of the free and scattered 
fields, respectively. For the displacement amplitudes 
{u:} and {UT> of the soil surface, the interaction 
forces that act at the nodes of the contact area and 
arise from the soil vanish, as for the free field loading 
state, the line that will subsequently form the 
foundation-soil interface is traction free. The inter- 
action forces (R} of the soil will thus depend on the 
scattered field displacements {us}, and according to 
the equilibrium condition (22) and eqn (28) can be 
written as 

(R > = [Cl VI PI b:l, (26) 

RS’) = Ii_, t(l;-‘I+ Ii t:” 

$1 = Ij , ty!, Ii ti’ 

;"yl' 
1 

uy I 
1 

t 

I 

I I+ II 
ttt tt 

1 
-~-W-.-D+* 

“‘I- 1) Utj’ 
t1 
(i-1) q 

b 1 

Ii-1 lj 
, 1 

Ii-1 lj 

(a) Compatibility of (b) Compatibility of forces 
displacements 

Fig. 3. Coupling conditions at the soil-foundation interface. 
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where the stiffness matrix [S] of the soil has been 
defined in eqn (19). Substituting the displacement 
compatibility condition (21) into the aforegoing eqn 
(26), a relationship between the interaction forces and 
the nodal displacements {a} is obtained in the form 

iR1 = [wl[~lwlT~~~ - bm (27) 

For the case of earthquake excitation there are no 
external loads applied on the strip-foundation and 
therefore the force-displacement eqn (20) becomes 

[ 

[~““l(ZN x 2hq K”t42N x NJ (0 1 

K”IW x 2NJ K,1,, x ‘w) ]{J= -I;;}. c2*) 

The elimination of the rotational degrees of freedom 
can be achieved by standard condensation operations 
on the complete dynamic stiffness matrix of eqn (28). 
Therefore, the reduced stiffness equation can be 
written as 

([G] - r~“,]rlu,,]-‘r~~:,,]){~} = -1~1, (29) 

while the nodal rotations {e} can be expressed in 
terms of the nodal displacements according to 
eqn (24). Finally, direct substitution of eqn (27) into 
eqn (29) yields the required relationship between the 
unknown nodal displacements of the strip-foun- 
dation and the known seismic excitation at the soil 
surface. This relationship has the form 

where the vector {up} denotes the free field displace- 
ment amplitudes at the boundary nodal points of the 
soil-foundation contact area. 

3. NUMERICAL RESULTS 

A computer program has been written for the 
numerical evaluation of the dynamic response of 
strip-foundations subjected either to harmonic loads 
or seismic waves, by using the numerical procedure 
described in Sec. 2.2. All calculations have been 
performed on a VAX 1 l-785, operating on a VMS 4.1 
system with a Fortran compiler. 

The first example serves to demonstrate the 
accuracy and convergence of the proposed method. 
The rigid strip-foundation of Fig. 4, having width 
2b = 5 ft, mass density pJ= 16.02 lb sec*/ft and thick- 
ness h = 0.5 ft is placed on a linear elastic soil with 
elastic constants Es = 2.58384 x lo9 lb/ft*, v, = 0.25 
and mass density ps = 10.68 lb sec2/ft4. The vertical 
displacement, horizontal displacement and rocking 
amplitudes at the midpoint C of the plate are 
obtained for the three loading cases shown in Fig. 4. 
The results are compared with those obtained from 
an analytical/numerical solution [l] for infinitely long 

1,000 lb 

I 

l,OOOIb-ft 

1,000 lb 

WA 
Case1 Case 2 Case 3 

C 
Y. 

Fig. 4. Discretization and loading of rigid massive strip- 
foundation. 

rigid massive blocks and are presented graphically in 
Figs. 5-8 vs the dimensionless frequency a0 = wb/c2, 
w being the circular frequency of the harmonic loads. 
For the first two loading cases the results obtained by 
the BEM-FEM method are in very good agreement 
with the analytical results. However, the results for 
concentrated moment at C (Fig. 7) do not compare 
so well. The difference is attributed to the type of 
boundary conditions imposed at the soil-foundation 
interface which do not preserve interelement con- 
tinuity between the strip-plate elements and the soil 
surface. In fact for the beam elements, the variation 
of the displacement function involves hyperbolic 
functions [30], while a constant variation of the dis- 
placement function is assumed for the boundary 
elements of the soil surface. Thus, as far as rocking 
is concerned, the model analyzed by the BEM-FEM 

5E - 007 r - BEM-FEM 
- - Analytical solution 

T?E .- m 
r 
>” 

lE-007- 

OE-000’ 
I I 

0.5 1.0 1.5 

Dimensionless frequency 

Fig. 5. Vertical response for vertical load at the center. 

6E-007r 

‘;o 
I OE+OoilI 

0.6 1.0 1.5 

Dimensionless frequency 

Fig. 6. Horizontal response for horizontal load at the center. 
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4E-008- 

- BEM-FEM 
2E-008- - - Analytical solution 

Dimensionless frequency 

Fig. 7. Horizontal response for concentrated moment at the 
center. 

4E+008r 

- BEM - FEM 
- - Analytical solution 

OE+OOO 
0.5 1.0 1.6 

Dimensionless frequency 

Fig. 8. Rocking amplitude for concentrated moment at the 
center. 

method, tends to be stiffer than the actual one. A 
considerable reduction of this error may be achieved 
by increasing the number of elements at the contact 
area. In Fig. 9, the percentage error in the numerical 
evaluation of the complex amplitude ] Q(C) ] obtained 
using the BEM-FEM as compared with that given by 
the analytical/numerical solution [l] is presented vs 
the number of boundary elements iU, for the rigid 
plate of Fig. 4 subjected to a vertical load at C. It is 
apparent that only a few elements are sufficient to 
obtain excellent results. 

In the second example, the transient response of 
point A at the surface of the soil medium shown in 
Fig. 10a is evaluated using the frequency domain 
hybrid BEM-FEM approach. The results are 
compared with a strictly FEM solution of the 
same problem, given by Elmer et al. [ll]. The 

15.00 
Response at center point 

- Real part 
- - Imaginary part 

S 
10.00 

B 
LS 

I \ 

5.00 :,_ 

‘. 

I 

0 10 20 30 40 

MC - number of elements 

-0.00001 
0 0.2 0.4 0.6 0.8 1.0 1.2 

Time (set) 

Fig. 9. Percent error in the vertical response of rigid plate Fig. Il. Time-dependent response at point A obtained using 
subjected to vertical load. the hybrid BEM-FEM method. 

11 2312 

Fig. 10. (a) Lkcretized soil surface, BEM-FEM modeling 
(E,= 0 and p,z 0). 

Dampers 

E 
N 

I 

x2 
I 

6m 6m 

Fig. 10. (b) FEM modeling and discretization of semi-infi- 
nite soil media [l 11. 

soil is characterized by a modulus of elasticity 
Es = 10’ kN/m2, mass density ps = 2.0 kN/m3 and 
Poisson’s ratio v, = 0.4. The soil surface is subjected 
to a vertical transient load that includes two frequen- 
cies only; namelyf, = 17.5 Hz and f2 = 22.5 Hz. Since 
the bulk of the strain energy in the soil is developed 
through Rayleigh waves, two series of dashpots tuned 
as suggested by Lysmer and Kuhlemeyer [lo] are 
placed along the surface of the soil model, as illus- 
trated in Fig. lob. The final time-dependent response 
at point A, obtained by synthesis of the frequency 
components, is plotted in Fig. 11, and is almost 
identical to the one obtained by the pure FEM 
method [ 111. The CPU time required to evaluate the 
response amplitude corresponding to the 17.5 Hz 
frequency was only 3.5 CPU min. The CPU time 
required for the FEM analysis of Elmer et al. is not 

0.00001 

E 
a 
T6 
g 0.00000 

f 
a 
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0.015 r 3 4E-004 r Edge of plate 

- f, = 17.5 Hz - Horizontal 
.--- fq = 22.5 Hz .----- Vertical 

E 

>” 
0.005 - 

I I I I I 

0 1 2 3 4 5 6 

X (ml 

Fig. 12. Displacement profile for frequencies f, andf, of the 
exciting load. 

E 
a 

,a----.__ 

OE + 000 ” 
-----;-----..._....______________ 

0 5 10 15 20 25 30 

x (ft) 

Fig. 14. Horizontal amplitudes for horizontal force. Vertical 
amplitudes for moment at C (a, = I, K, = 0.05, M, = 1.25). 

available to compare the efficiency of the two 
approaches. However, the CPU time required for the 
same analysis using the ANSYS program was 
19.32 CPU min, which clearly indicates the advantage 
of BEM in solving dynamic SSI problems. Figure 12 
portrays the soil displacement profile for the two 
frequenciesf, andf, . The displacements decrease with 
increasing value of the frequency f and both plots 
clearly show the decay of the response amplitudes due 
to radiation damping. 

Consider a flexible strip-foundation being in con- 
tact with a homogeneous isotropic linear elastic half- 
space. The soil properties are taken as the modulus 
of elasticity E, = 3.2256 x lo6 lb/in2, Poisson’s ratio 
v, = 0.4, mass density p, = 3.75 lb sec2/ft4 and damp- 
ing coefficient c, = 0.05. The foundation under con- 
sideration has width 26 = 20 ft, thickness h = 0.5 ft, 
Poisson’s ratio v/= 0.2 and damping coefficient 
[,= 0.02. The parameters characterizing the flexibility 
and inertia of the soil-foundation system are the 
relative stiffness and relative mass defined by 

K _ Efh3 l+v, 

‘-qTp 

and 

respectively. The soil surface under the strip-foun- 
dation is discretized into 16 boundary elements and 
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Fig. 13. Displacement profile for vertical load at the center 
of the flexible massive foundation (a0 = 1). 

the free soil surface into four uneven elements at 
each side of the foundation. The response of the 
soil-foundation system is determined first for vertical 
load P2 = 1000 lb acting at the center point C and 
having dimensionless frequency CI~ = 1. The vertical 
response amplitudes are obtained for representative 
values of the relative stiffness K, and the relative mass 
M,, and are given graphically in Fig. 13. The relative 
stiffness takes the values 0.05, 5 and 500, which 
correspond to flexible, intermediate and almost rigid 
strip-foundation, respectively, while the relative mass 
takes the values 1.25 and 4, which represent a con- 
crete and a steel plate. It can be easily observed that 
the displacements increase as the foundation becomes 
more flexible and although the effect of different mass 
densities on the response is very small, the displace- 
ment of the soil-foundation system also increases, 
when the total mass of the plate increases. In Fig. 14, 
the variation of the horizontal and vertical displace- 
ment amplitudes along the soil surface are presented 
for horizontal force P, = 1000 lb and moment 
M3 = 1000 lb ft, respectively. 

The steady-state response of a rigid massive strip- 
foundation subjected to Rayleigh waves is studied. A 
modulus of elasticity E, = 1.24 x 10” N/m2, Poisson’s 
ratio v, = 0.25 and mass density ps = 5362.45 kg/m3 
are adopted as material properties of the supporting 
soil, while the strip-plate is characterized by a mass 
density Q= 7.5 ps and thickness h = 0.2 b. The pro- 
posed hybrid BEM-FEM method is compared here 
with the time domain direct boundary element 
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Fig. 15. Horizontal Rayleigh-wave response amplitude of 
massive rigid strip-foundation. 
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Fig. 16. Vertical Rayleigh-wave response amplitude of 
massive rigid strip-foundation. 

method proposed by Antes and Spyrakos [22]. The 
results of the time domain BEM are transformed 
to the frequency domain through a Fast Fourier 
Transform. In order to analyze the response of the 
soil-foundation system, two discretization patterns 
have been considered. For the first one, which is 
suggested in [22], an amount of free surface equal to 
6 is divided into two elements at each side of the plate, 
and the contact area is discretized into four boundary 
elements. For the second pattern, which was intro- 
duced to capture more accurately the free field dis- 
placement distribution along the soil surface, each 
part of the free surface has length 46 and is divided 
into eight elements, while the discretized contact 
surface consists of eight boundary elements. The 
response of the rigid massive block was obtained for 
the vertical component of the impulsive Rayleigh 
wave propagating along the x,x,-plane, with free 
field displacement amplitudes given by 

where w is the frequency of the plane wave excitation 
and cR = 0.9194 c2 the Rayleigh wave velocity. The 
difference in the results of the two methods is at- 
tributed to the fact that the time domain BEM is used 
to obtain the response of a massive rigid block and 
the surface foundation is considered as a limiting 
situation corresponding to a block with very small 
height compared with width. However, the results of 
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Fig. 17. Rotation of massive rigid strip-foundation sub- 
jected to Rayleigh waves. 

both methods have the same trends and show 
clearly the effect of Rayleigh waves on the structural 
system. 

4. CONCLUSIONS 

A hybrid BEM-FEM method has been developed 
to study the dynamic behavior of flexible massive 
strip-foundations. In particular, two separate formu- 
lations are presented in order to investigate the cases 
of harmonic loads and seismic waves. The salient 
features of the BEM-FEM have been compared with 
approximations commonly adopted by analytical/ 
numerical approaches or purely numerical FEM 
methods. Comparisons of the results have shown to 
be in a very good agreement with those given in the 
literature, even for a relatively small number of 
elements. They have also revealed that, in some cases, 
the hybrid method appeared to be more advan- 
tageous over other methods, since it provided a more 
realistic simulation of the physical problem. The 
frequency domain BEM-FEM approach has proven 
to be more efficient and considerably faster than time 
domain methods in analyzing soil structure inter- 
action problems, involving a transient excitation with 
a small number of harmonic components. An import- 
ant aspect that should be further investigated is the 
coupling conditions at the soil-foundation interface. 
The conditions adopted in this work are not very well 
refined and seem to lead to an increase of the overall 
stiffness of the system. This weakness of the formu- 
lation may be alleviated either by using a more dense 
discretization, which is not an efficient solution to 
the problem, or by incorporating into the coupling 
conditions the shape functions of the finite beam 
elements. 
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