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Abstract—This work deals with 1he development and presentaton of a lrequency domain hybeid
numenrical method fur determining the dynamic response of surface strip-foundatiens under conditions of
plane strain placed on an elastic soil medium and subjected @ cither exicmally applied foress or seismic
disturbances, The elastic. iscttopic, and homogenecus soil medium is trealed with the boundary clement
methed, while the flexible and massive foundation is treated with the finite glement method, The two
methods are appropriately combined through eguilibrum and compatbility conditions at the
soil foundation inwerface. Several numerical cxamples are worked cut o demonstrate and attesl the

efficicney and accutacy of the method.

1. INTRODLCTION

In recent ygars, the dynamic response of two and
three-dimensional footings placed on a linear elastic
half-space and subjected 10 external dynamic loads
has been investigated extensively. The loads may be
either a harmonic force excitation, as in the case of
machine foundalions, or a sgismic lead (specified
gither as basc acceleration or prescribed frec field
displacements) represented by their frequency con-
tent. In these cases the analyses are performed prefer-
ably in the frequency domain. Furthermore, under
these loading conditions, the analysis and design
must acegunt for the interaction between the foun-
dation and the soil, since the soil-foundation
interface moves or distoris differently from the corre-
sponding surfaca in the free ficld. The response of the
structure-Toundation system is influenced by the sail
which cxhibits an esseniial feature, the gegometric
damping. This is due (o the fact that waves travel out
to infimty resulting in energy dissipation even if the
soil is assumed to consist of a purely elastic material.

Several compuotational procedures are presently
available to obtain dynamic impedance funclions and
the foundation response for each specific problem [1].
[n boundary value problems, the boundary clement
method (BEM) presents several advantages over
domain methods when analyzing viscoelastic homo-
geneous media with a large volume-to-sutface ratio,
Such advantages include reduction of the problem
dimensionality by one, consideration of the radiation
condition at infinity and erhancement of numerical
accuracy [2]. The BEM has becn applied to the
general soil slruclure  interaction (SS8I) area of

T Portions of this work have been presented at the 2nd
Mauanal Congress on Mechanics of the Hellenic Society for
Theoretical and Applied Mechanics (HSTAM), Athens,
June 1989
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research through either a frequency or a time doemain
formulation. Cruze and Rizzo[3] presented a fre-
quency domain BEM lormulation of peneral two-
and three-dimensionzl elastedynamic  problems.
Niwz ¢ al.[4) and Banaugh and Goldsmith [5)
applied a frequency domain BEM to study steady-
state wave propagation problems. Ottenstreuer and
Schmid [6] studied the problem of cross-interaction
between Iwo rigid surface foundations. Antes and v,
Estorff[7] presented tume-dependent BE procedures
iz treat general two-dimensional elastodynamic prob-
lerns under arbicrary initial conditiens and body
forces. Antes' research was restricted to cigid-type
lpundations,

The versatility and accuracy of the finite ¢lement
method (FEM) in analyzong finite domains is well
established [8, 9. In treating SSI problems, however,
FEM poses distinet disadvantages aver BEM, stem-
ming from its inability to appropriately model semi-
infinite soil media [10, 11]. In order to take advantage
of 1he merits af both methods, it is preferable 1o 1reat
the finile size structure with the FEM, the supporting
semi-infinite scil with the BEM and combine the two
methods through appropnate equilibrivm and com-
patabilily conditions at the soil foundation interface.
Adopling a hybrid approach, analysis and design
are not restricted to simple-peometry Structures ar
undamped syslems, but can be extended to composite
structures, multiply-connected structural sysiems
and also  account for  viscous or hysterslic
damping [12-18].

Several authors have studied the problem of
obliquely incident waves impinging on & rigid or
flexible foundation. Wong and Luco [19] were the
first to study the dynamic response af a rigid masslass
rectangular foundation, while Whittaker and Chris-
tiang [20] studied the case of flexible surface foun-
dations. Drominguez [21] applied a frequency domain
BEM 1o the study of rigid massless foundations and
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Antes and Spyrakos[22] analyzed the response of
massive blocks to transient Rayleigh waves ysing the
time domain BEM.

In this wark two separate formulations are pre-
sented in geder to study the cases of externally
apphed harmonic loads and harmonic seismic wave
excitations. The salient leatures of ihe frequency
domain BEM-FEM are compared with approxi-
mations commeonly adopted by analytical/numerical
approaches or purely numerical FEM methods. Para-
metnic studies examiming (he ¢ffect of the relative
stiffness and relative mass between the foundation
and the soil, and the spaial distobution ol the
dynamic disturbances on the foundation response are
presented, The work at hand is one of the initial
atiempts 1o investigate the dynamic behavior of
strip-plates accounting for beth the foundation
flexibility and inertia [22].

I FORMULATION AND NUMERICAL
IMPLEMENTATION

The sequence of presenting the hybrid BEM-FEM
formulation, as can b applied to elastodynamic
problems. consists of three sieps. Namely, the devel-
opment of an imegral equation corresponding to
MNavier—Cauchy equations atd boundary conditions
of an infinite linear elastic or viscoelastic medium;
the development of the differential equarions and
boundary-initial conditions associated wilh the finie
domain; and the numerical treatment of the govem-
ing integral and differential equations with the aid of
the BEM and FEM, respectively, Herein the infinite
medium is the soil, while the system of finite dimen-
sions is the overlaying foundation, as shewn in Fig, 1

2.1. Basic theory

Consider a homogeneaus isetropic and linear elas-
tic body & with boundary § subjected ta body forces
B{x;:)_ In steady-state elasiodynamics the displace-
ment vector associaled with each pomnt xe £+ 8 1s

X3

Er.proupde

Es.patrafy

Xz

Fig. 1. Geometry, loading and maigrial constants of the
soil-foundation system.
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given by Gix; f}=uix; wle*’. Under thy assumplion
of small displacement theory and for plane strain
conditions, the elastedynamic displacement field of
body R is governed by Wawier's equation of equi-
librium [24],

(cf—ciu
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where & = iw(f = \,-*'?-1], i is the circular freguency
of the problem. w,(x) and zy{x} are the initial dis-
placement and velocity, respectively, and b(x; &) are
the Laplace transforms of E(x; i}, which are the
compaonents of the body force per unit volume. In the
above equation, ¢, and c; arg the dilatational and
shear complex wave velocities, respectively, given in
terms of the modulus of elasticity E,. Poisson’s £atio
v, and tnass densiny g, by,
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where the subscript s indicates that the elastic con-
stants refer to the soil. In egqn (2), £, and {; denote the
ratios of Lthe linear hysteretic damping for P- and
S-wawves, respeclively. Linear hysterclic damping is
independent of the lrequency of excilation, w, and
can be introduced inle the solution, when working in
the frequency dotnaim, by using the correspondence
principle [25]. The latter states that the damped sol-
ution is obtained from the elastic one by replacing the
elastic consiants by the corresponding complex ones,
Hysteretic damping does not fulfil the causality
requirement, a necessary condition to apply the cor-
respondence principle. Nevertheless. ils use leads o
reasonably accurate results for very deep soil depasits
and halfspace soil idealizations [1. 26]. In the present
work it 15 assumed that the damping coefficients for
the two waves are equal, which implies thal the
Poisson's ratio is real. and {, will refer 1o the soil,
while {; 10 the strip-foundation.

For the general case we have to consider a mixed
boundary value problem with houndary conditions,

and

alxhu(x k) +Bxp i k) =1{x], xe5 (3)
whok)=0 and (x; k)—-0, xeS,., )
where S§=5,u5,, as shown in Fig. L

w(x), f{x). y{x) are known f[unctions en 5, and
£(x; k) are the traction componenis on the boundary.
[t must be pointed out that condition {4} is valid only
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when the domain R extends to infinity in the half-
plane. The solution of eqn {1} is given by the follow-
ing integral representation [27],

%HJ(Q;H=J‘ LP RGP, QL kY dS(P)

5

—f 4P} KT, (P, Q: KYAS(P)

Bi{p: k
+ _U (% + kgt p) + vu,(p))
R

x Uy(p, @i k) dA(p), (3
where dA{pg) is an area element at a field point
pixye R and dS{P) is an element on the boundary
at a field poirt P(x3e 5. The arguments of elements
d4 and dS denote the pommt which varies
during integration. The fundamental solutions &,

{p(x), q(8) k) and Ti(p(x), ¢(g) &) cxpress dis-
placement and traction components, respectively, in
the x-direction at the observation point p{x} &t a
distance r =[x — { | away from the source point g(f ),
due te a concentrated unit load acting at (&) in the
x-direction. The two-peint tensors U, and T, are
given explicitly by the following formulag [24]

|
U, e § k)= s, —qr.r.) {6}

2mp, e}

1 d F ir
Tl'r{x' {:k} = ﬂ [(d_‘f - %)('Su a + r-J"rf)
i ir di &
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e] & di 7
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[n eqns (B) and (%), K,(z), K.(z), Fi(z)(- e &) are
modified zero-, fiest- and second-order Bessel func-
tions of the second kind. respectively. Definitions
and properties of the modified Bessel functions
K (i=0,1,2) can be lound in various sources, ..
[28, 29]. Equation (5) can be viewed as a constraint
equation between the transformed traction vector
and displacement vector on the boundary and the
iransformed body force in the intenor of the body,

The second constituent of the soil-structure system
is a massive flexible sivip-foundation in complete
bond with the soil. On the basis of the Bernoulli-
Euler beam theory, the axial and flexural motions of
a ymt width of the sirip-foundation are governed by
the following uncoupled equations [27]

Echol + prhi’e = —(p — 1) {1y

and

Dy — prhor’ey =pr— 1. (12)
where &) =, {x ;&) and @& =, k) are the ampli-
tudes of the axial and the flexural maolion, respect-
ively. In the above equation p,{x,: k) and p.(x;; &) are
the amplitudes of the externally applied harmonic
forces, while 73 (x: &) and t-;(x,; k) are the contact
stresses apphed on a unit width of the foundation.
According w the correspondence principle [25],
malenal damping has been taken into account by
introducing the complex modulus of elasticity,
= EL1+ 20,4} and the complex fAexural rigidity,
D= E NI —v}), with A, v and {, denoting the
thickness, the Poisson’s ralio and the damping co-
efficient of the linearly elastic foundation, respect-
ively. Evaluation of the flexible foundation response
can be obtained by numerical solution of the system
of eqns (5), (11} and {12} with the associated bound-
ary and initizl conditions.

2.2 Numerical reattient

In this investipation the boundary integral eqn {5)
can be discreuzed by dividing the boundary
5, = 57w S, of the soil surface into an M = M, + M,
number of boundary elements. The soil-foundation
contact area 5, {5 divided inta A, clements, while
the free soil surface 5, is divided inlo M, ¢lements, as
shown in Fig. 2. The clements are not negessarily

Fo=(ix, — &M — EN]Y {f=1,2) (10} equal, they are numhbered consecutively from left to
p—— .28 _ —  Finits glemant
discratization sahemg
1 3 NN
S SRS SIS s,
1 2 ]- ! {11 2 (N1 i+l j+2 Sy X1
k t + + t u fom—t + | ——
123 4. \ Mg -1 M N
5S¢ Boundary slemant 5

- . S: !
digeratization s¢hams
3]

Fig. 2. Typical BEM- FEM discretizalion.
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right and the nodal points are placed at the center of
the corresponding boundary elements. The values
of the boundary displacements w, and tractions
(; {f = 1, 2] are assumed constant over each element
(step function assumption} and equal to their values
at the nodal point of the glement.

Under the assumplion of zero body forces and
initiai conditions, eqn (5) can be wrilten in the
following form.

- ¥ Hdul, 03)

n=1

M
Hitw= ¥ |G i),

whete mon =1,2,3,.... M,
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(14) and (15), respectively. Furthermore, eqn (26) can
be rewritten in the following partitioned form as

[[ﬁrr] [ﬁrf]:l{{uf}llk‘rxu}
[ PRI E2 /] | REPS SO

= [[G«] IGU’]]{{ICI{UM, a LI}. {1-”

Gl Gyl | Ut hnyn

where the subscripis ¢ and f designate clements on
the svil-foundation contact surface and on the free
surface, respectively. Applying the boundary con-
dition {1} = {0}, ie. the part 5, of 1he soil surface is
traction free, in eqn (17), one can easily eliminate the

frec-surface displacements and oblain a stiffness
equation of the form

. wifmi k) X, k) ,
I'I{;"':}[u;{f..,!k}}' {i}"={.'j(x,;k}}' o) =[Sy, zualie (18)
B

o = {u.tx,:k)} e
e = . _ -
X K) (S}=AIG..1— [AAlH;] [Geh
and x (H.]- [BAH]HD. (19
J U %, & k) AS (XY | Ui, & k) ASTX)
[Clw= | *F \ {14
Lo, §rn K3 AS(X) Lolx, S RPdE(K)
Tox, &, K150 | Talx. &, k) dS(0
(= | % " . (15
Toix, &, k1 dSix) Toalx, £ k) dS0

In the above cquations § denotes the spatial veclor
af node m, where the solution point is positioned and
x, 15 the spatial vector of the variable node ». The
integration point x in eqns (14) and {13) varies along
the x element and when m # r{r # 0} the line integrals
are regular and can he evaluated using any of the
known numerical techniques [or the evaluation of
line integrals. However, when m = # the argument r
vanishes when x = § and the values of the singular
integrals are established by a limiting process for
r—0. In this investigation these line inlegrals are
computed wsing 1he echnique presented in [27)
Equation (L3} can be written for every boundary
elerent mr == 1,2, 3, .. ., M, in which case the result-
ing system of 2M simultaneous linear algebraic
squations can be cast in a matrix form as

[Hlfu} - [G}r) = {0}, (16)

where [H]=[H]+:i[f]. and the emdes of the
{28 x 20 ) matrices [#] and [G] are given in egns

Equation {18) constitutes a system of 2Af, equations
in 4, unknowns. The additonal 2M, equations
which are required to establish the unknown bound-
ary displacements and tractions are detived from
the equilibrium and compatibility condilions at the
soil-foundation interface and have the general form
of eqn (3}

(£3 Externally applied feads. The strip-plals
dynamic stifiness mairix can be cbtained from the
expressions presented by Spyrakos and Beskos [30), if
the beam rigidity £F is substituled by the strip-plate
rigidity O, The advantage of the dynamic stiffness
influence coefficients is their ability 1o capture inettia
effects more accurately than conventional finite
element procedures using stiffness matrices derived
from static FEM formulations. On the assumption
that each finite element of the discretized foundation
model must be in contact with two successive bound-
ary elements of he suppaorting soil, the strip-plate is
divided inte M./2 Anile beam elements (M, ¢ven),
introducing in this way ¥ = M, /2 = | nedal points,
Thus, through standard finite element procedures,
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eqns {11} and {12} can be expressed in 2 partitioned
form as

I:[lerz.h :mixﬁ]q‘:xrm:l{{v}} - {{P} } _ {{R}}
I dv s s Ksekow < v | LE0} {M} {0}
(200

in which [K,.), [K+) [Ks] and [Ky] are the sub-
matnces of the Lol dynamic stifiness matrix, {v} and
{¢} represent the nodal displacement and rotation
veetors, { P} and {Af) are the nodal external loads
acting on Lhe strip-foundation and {R} is the vector
of the nodal forces associaled with the contact
sLresses.

Coupling of the matrix eqns (18) and {20) reguires
carrespondence belween nodal displacements and
Lraciiens as specified by BEM and FEM approxi-
wmations. In order to inwroduce compatibilily between
the deficction of the structure and the scil motion
at the interface, the displacement of cach node of
the finite element discretization scheme is assumed
o be egual to the displacements developed ower
two successive boundary clements joined at this
node (Fig. lda). Simitlarly, compatibility of lorees
can be cslablished if each contact force {R},.,
im=12 .. ,N) applicd al nade s of the sirip-
foundation, is approximated by the resultant of
the two forces associated with the contact siresses
that develop over the two conliguous elements
whose commaon extreme point coincides with node m
{Fig. 3b). Therefore, lor the whole interface region,
the compatibility conditions can be expressed as

{ ) =€ {21)

atd

(R} =[CIN S (22)
where the entries of the (2N = 2M ) matrix [] are
gither G or 1. [f] s a (2M, = 203 diaponal martrix
consistmg  of  the boundary vierment lengths
fL{i=1,2,.... M.} and the supersenpt T denotes
matrix transpasition.

vl = gt = oY

. . -
W N o
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Equations (18) (22) lorm a system of linear
algebraic equations, which can be solved for the
unknown displacements {r} and rotations {6} to give

{r} = ([Ka] — [Kol[ K] 'K ]
+ [CIHSC

x (1P} = [K,)(Kn]'{AM 1) (23)

and

10} = [Ku]" ' M} - [K]{v]) (29

{ii}y Obliguely incideny seismic waves. Consider
now the same foundation in complete bond with the
supporting elastic haif-space and subjected to seismic
waves propagating in a direction parallel o the
x, x;-plane. By adopling the procedure suggested by
Thau [31]). the total displacement field {u} can be
decomposed into two parts: the free field due to the
impinging scismic waves, and the scattered field
generated by the motlion of the loundation in Lhe
ahsence of any seismic excitation. This is expressed
matheratically by

F s
I

{i} {uf {uf
where the superscripls F and § are used to indicaie
the displacement vectors of the free and scattered
fields, respectively. For the displacement ampliludes
{uf} and {uf} of the soil surface, the interaction
lorces thal zcl at the nodes of the contact area and
grise from the s0il vanish, as for the (tee field loading
state, the lin¢ that will subsaquently form the
foundation-soil interface is traction free. The inter-
action forces { R} of the soil will thus depend on the
scaltered feld displacements {u®}, and according to
the equilihum condition (22) and eqn {28} can he
writteh as

{25)

{R} =[CIE](S] (], (26)
I e YRt

RY =1y t§™ 1 tF

vi}i] V!Ii' R‘.” qu,'p

i ] !

% q o

\ sy
W u{fl ‘t‘i’“ tf_lﬂ

18} Compatibility of
displacements

{b} Campatibility of forces

Fig. 3. Coupling conditipns at the suil-foundation interface.
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where the stiffness matrix [8] of the scil has been
defined in eqn (19). Substituting the displacement
compatibility conditien (21} into the aforegoing eqn
(26), a relationship between the interaction forces and
the nodal displacements {r} is obtained in the form
{R} = [CIVISICT (e} — WiD. @D

For the case of earthquake excitation there are no
external loads applied on the strip-foundation and
thereforc ihe forcc—displacement sqn (20} becomes

{[KH'].{IN = I [XLJ ];Hr' k] Nj:Hi{t" }} - _ {{.R }} {28)
[Kﬁ'Ji.\' = 1) [KPE ]I-\" = ) {B } {0}
The elimination of the rotational degrees of freedom

can be achicved by standard condensaiion operations
on the complete dynamic stiffness matrix of eqn (28).
Therefore, the reduced stiffness equation <an be
written as

(1K) - [KoKal IR Div} = —{R}, (29
while the nedal rotations {8} can be expressed in
termns of the nodal displacements according 1o
eqn (24). Finally, direct substitution of egn {27) into
eqn (29} vields the required relationship between the
unknown nodal displacements of the sirip-foun-
dation and che known seismic excitation at the soil
surlace. This relationship hay the form

— (K] [Kon]™ 1K ]
+ [CIHISICT I NC IS Hul S

v} =((K,.]
(30)

where the vector (4]} denotes Lhe [tee field displace-
mene amplitudes at the boundary nodal points of the
soil-foundation contact area.

A NUMERICAL RESULTS

A computer program has been written for the
rumerical evaluation of the dynamic response of
sirip-foundations subjected gither to harmonic loads
Or seismic waves, by using the numerical procedure
described in Sec. 2.2. All calewlations have been
performed ona VaX [1-785, operatingona YMS 4.1
sysiem with a Fortran commiler.

The first cxample serves 10 demonsirale the
accuracy and convergence of the proposed method.
The ngid strip-foundation of Fig. 4, having width
2b = 51, mags density p, = 16.021b sec’/ft and thick-
ness A =051t is placed on 2 linear elastic soil with
elastic constants £, = 2.358384 = 10*b)ft8, v, =025
and mass density g, = 10.68 b sec™/ft*. The vertical
displzcement, horizontal displacement and racking
amplitudes at the midpoint C of the plate zre
obtained for the three loading cases shown in Fig. 4.
The resulis are compared with those obiained from
an analytical/numerical solution (1] for infinitely long

F. T. Kokkixos and €. € SpyRaKos
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Fig. 4. Discretization and loading of rigid massive strip-
foundation.

rigid massive blogks and are presented graphically in
Figs, 5-8 vs the dimensionless frequency o = wh/c,,
o being the circular frequency of the harmonic loads,

For the first two lpading cases the results obtained by
the REM-FEM method are in very nrnn.r'l agreement

with the analytical resulis. Howcvcr the results for
concentrated moment at C (Fig. 7) do not compare
so well. The difference is aitributed to the type of
boundary conditions imposed at the soil-foundation
interface which do not preserve intérelement con-
tinuity between the strip-plate elements and the soil
surfage. In fact for the beam elements, the vanarion
of the displacement Ffunction inveives hyperbolic
Munctions [30], while u constant variation of the dis-
placement function is assumed for the boundary
elemeats of the soil surface. Thus, as far a5 rocking
is concerned, the model analyzed by the BEM-FEM

GF - D07 -

— BEM - FEM

4E - 007

3c- D07

2E - (K7

1E-ou7|—

Vertical displacemant
ampiitude f

| .
-0 s 1.0 15

Dimensianless frequancy

Fig. 5 Vertical respnnse for vertical load al the center.
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%E 4E-007 -

n £

2

-E 2E. 007 —— "EM -FEM
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I \ O
oE 0K e 1.0 15
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Fig. 6. Horizontal responst for horizontal load at the ¢center,
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Fig. . Rocking amplitude for conceniraled moment at the
canter.

method, tends to be stiffer than the actual one A
considerable reduction of this error may be achieved
by increasing the number of elements a1 the contact
area. In Fig 9, the percentage error in the numenical
evaluation of the complex amplitude |2, (C)) obtained
using thec BEM-FEM as compared with that given by
the analytical/numerical solution [1] is presented vs
the number of boundary elemenls A, for the rigid
plate of Fig. 4 subjected to a vertical load at C. It is
apparent that only a lew elements are sufficient to
oblain excellent results,

In the second example, the transient response of
point A at the surface of the soil medium shown in
Fig. 10a is evaluated uvsing the frequency domain
hybrid BEM-FEM approach. The results are
compared with a strictly FEM sclution of the
same problem, given by Elmer et al[11]. The

15.00
Aaaponse ot center point
— Real part
To00k = = |inaginary pert

Errar (%)

5.00

i, |
o 0 20 30 1)
Mz — rumbar of alerments

Fig. 9. Percenl crrer in the vertical response of rigid plate
subjected 10 vertica! load,
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Fig. 10, (b) FEM modcling and discretization of semi-inf-
nite soil media [11].

SRR AL

5
&

soil % characterized by a modulus of elasticity
E, = 10°kNym®, mass density p,=20kN/m’ and
Poisson’s ralic v, = 0.4 The soil surface is subjected
o & vertical transient load that includes two frequen-
clies only, namely /| = 17.5 Hz and £, = 22.5 Hz. Since
the bulk of the strain energy in the scil is developed
through Rayleigh waves, two series of dashpots tuned
as suggested by Lysmer and Kuhlemeyer [10] are
placed along the surface of the soil model, as iltus-
traled in Fig. 10b. The final time-dependent response
at point A, obtained by synthesis of the requency
components, is plotied in Fig. 11, and is almost
identicel to the one obtained by the pure FEM
methoed [11} The CPU time requited to evaluate the
response amplitude corresponding to the 17.5Hz
frequency wes only 3.5CPUmin. The CPU time
required [or the FEM analysis of Elmer et al. is not
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Fig. 1]. Tirne-dependent response at point A4 oblained using
the hyhrid BEM-FEM method.
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Fig. 12, Displacement profile for Mrequencies £, and f; of the
cxciting load.

available to compare the efficiency of the two
approaches. However, the CPU time required for the
same analysis using the ANSYS program was
19.32 CPU min, which clearly indicates the advantage
of BEM in solving dynamic 551 problems. Fipure 12
portrays lhe scil displacement profile for the Lwo
frequencies f, and f;. The displacermenis decrease with
increasing value of the frequency f and both plots
clearly show the decay of the response amplitudes due
1o radiation dampimg,

Consider a fexible strnip-feundation being in con-
tact with a homogeneous isolropic linear elastic half-
space, The soil properiics are taken as the modulus
of elasticity £, = 3.2256 » 107 Ibjin®, Poisson’s ratio
v, =04, mass density g, = 3.75 Ibsec®/ft* and damp-
ing coefficient {, =0.05. The foundation under con-
sideration has width 2b = 201t thickness & =051,
Poisson's ratie v,=02 and damping coeffictent
gr =10.02. The parameters characterizing the fAexibility
and inertia of the soil-foundation system are the
relative sthiffness and relative mass defined by

K- Ed 14y,

-} £
and
M=
s,

respectively. The soit surface under the sinp-foun-
dation is discretized into 16 boundary elements and

4.5E - —
— K =005 M, =125
=500 M, = 1.25
3.5E - 04 =500 M, =12E
_ =005 M, =4.00

=
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=
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o 5 1 15 0 25 30
X

Fig. 13. Displarement profile Tor vertcal load an the center
of the flexible massive foundation (7, = 1).
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Fig. 14, Horizontal amplitudes for horizontal force, Vertical
amphiludes for moment at O {a, = 1, K, —0.05, 3, = 1.25).

the free soil surface into four wneven glements at
cach side of the foundation. The response of the
soil-foundalion system is determined first for wertical
load £, = |00 b acting at the cenler point € and
having dimenstenless frequency oy = 1. The vertical
response amplitudes are obtained for representative
values of the relative siiffness &, and the relative mass
M., and ar¢ given graphically in Fig. 13, The refative
stiffness takes the values 003, 5 and 300, which
correspond to flexible, inlermediate and almost rigid
sirip-foundation, respectively, while the relative mass
takes the values 1.25 and 4, which represent a con-
crete and a steel plate, 1t can be easily obscrved that
the displacements increase as the foundation becomes
more flexible and although the effect of different mass
densities on the response is very small, (he displace-
menl of the sotl-foundation system also increases,
when the total mass of the plate increases. Tn Fig. 14,
the variation of the horizontal and vertical displace-
ment amplitudes along the soil surlace are presented
for horizontai force £, =10}Ib and moment
M, =10001b 1, respectively.

The steady-state response of a rigid massive strip-
foundation subjected to Rayleigh waves 1s studied. A
modulus of elasticity £, — 1.24 = 10'' N;m®, Poisson's
ratio v, = 025 and mass density p, = $362.45 kg'm”
are adoptedt 45 malerial propenies of the supporting
soil. while the siop-plate is characterized by a mass
density p,=7.5p, and thuckness A =025, The pro-
posed hybrid BEM—¥EM method is compared here
with the time domazin direct boundary element

008 __ Time dormain BEM (2,42}
— - BEM - FEM (2.4.2} i
ogel v BEM - FEM 8.2.8) :
3
= poaf
=
Q.02
0.00 —— 1 ] L H
o ne 13} 1.2 156

Dimensionless frequency

Fig. 15 Horizantal Rayleigh-wave response amplitude of

miassive rigid strip-foundation.
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Fig- 16 Vertical Raylcigh-wave respomse amplitede of
massve apgid strip-foundation.

method proposed by Antes and Spyrakos [22]. The
results of the time domain BEM are transformed
1o the frequency domain through a Fast Foorier
Transform. In order to analyze the respomse of the
soil-foundation system, two discretization patlterns
have been considered, For the first one, which is
suggested in [22], an amount of free surface equal to
& is divided into 1wo elements at each side of the plate,
and the contact area is discretized into lour boundary
elements. For the second pattern, which was intro-
duced to capiure more accuralely the free field dis-
placement distribution along Lhe soil surface, each
part of the free surface has length 44 and is divided
inta eight elements, while (he discretized contact
surface conpsists of eight boundary elements. The
response of the rigid massive block was obtained for
the wvertical component of the impulsive Ravleigh
wave propagaling along the £ x;-plane, with free
ficld displacement amplitudes given by

wfi) = 4,67,

where o is the frequency of the plane wave excitation
and ¢z =109194 ¢, the Rayleigh wave velocity. The
difference in the results of the two methods is at-
tributed to the fact that the tirae domain BEM is used
1o obtain the response ol a massive rigid block and
the surface foundation is comsidered as a limiting
siluation corresponding 10 a block with very small
height compared with width. Howewver, the resylts of

0.8  — Time domain BEM (2,42}
- - BEM-FEM (2,42}
amm- — BH _,1-"
06 BEM — FEM {8,8.81 .
<
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0.2 -
1 | 1 |
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Cimensionleas frequency

Fig. 17. Rotation of massive ngid strip-foundation sub-
Jeoled 1o Rayleigh waves.

both methods have the samc trends and show
clearly the effect of Rayleigh waves on the structural
sysiem.

4. CONCLLUSIMNSG

A hybrid BEM-FEM method has been developed
to stody the dynamic behavior of flexible massive
strip-loundations. In particular, (wo separate formu-
lations are presented in order to investigate the cases
of harmonic loads and seismic waves, The salient
features of the BEM-FEM have been compared with
approximations commonly adopted by analytical/
numerical approaches or purely numerical FEM
methods. Comparisons of the results have shown to
be in a very good agreement with those piven in the
literature, even for a relatively small number of
elements. They have also revealed that, in some cases,
the hybrid method appeared Lo be more advan-
tageous over other methods, since it provided a more
realistic simulation of the physical problem. The
frequency dormain BEM FEM approach has proven
to be more efficient and considerably laster than time
dotnain methods in analyzing soil structure inter-
action preblems, involving a transient excitation with
a small nomber of harmonmic components, An tmpork-
ant aspect that should be further investigated is the
caupling conditions at the soil foundation interface.
The condilions adopted in this work are nol very wel]
refined and seem 1o lead Lo an increase of the overall
stifiness of the system. This weakness of the lormu-
lation may be alleviated either by using a more dense
discretization, which is not an efficient solution 10
the problem, or by incorporating into the coupling
conditions the shape lunctions of the finile boam
elemenls.
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