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POWER SERIES EXPANSIONS OF DYNAMIC STIFFNESS 
MATRICES FOR TAPERED BARS AND SHAFTS 

CONSTANTINE C. SPYRAKOS' AND CHING I CHEN' 

West Virginia University, Morgantown, W V  265064101, U.S.A. 

SUMMARY 

Stiffness and consistent mass matrices for tapered bars and shafts are derived with the aid of static 
displacement functions. Moreover, the corresponding dynamic stiffness matrices are developed in the 
Laplace transform domain from the exact solutions of axial/torsional governing equations. Power series 
expansions of the Bessel functions comprising the dynamic stiffness influence coefficients show that the 
stiffness and consistent mass matrices can be mathematically derived from the dynamic stiffness matrices. A 
discussion on the convergence of the power series expansions is also presented. The developments provide 
further insight into the approximations present in conventional consistent mass formulations of frameworks 
with tapered members. 

INTRODUCTION 

The dynamic analysis of tapered beams, bars and shafts has been a subject of continuous 
attention and research interest. A thorough presentation of analysis methods pertinent to the 
dynamic behaviour of tapered beams/bars has been presented by Kolousek.' The conventional 
finite element method for determining the dynamic response of structural systems comprised of 
tapered flexural/axial members has been based on either a lumped or a consistent mass 
representation that employs as displacement functions the solutions of static governing 
equations.'. A stepped representation of the tapered members as an assembly of uniform 
elements is usually adopted as the structural model. This stepped representation requires a 
relatively large number of elements to accurately determine the dynamic re~ponse.~. 

An alternative approach would be the use of an exact stiffness matrix; namely, the dynamic 
stiffness matrix, developed from the corresponding governing differential equations for free 
flexural/axial  vibration^.^, - l0 Banerjee and Williams' have developed exact dynamic stiffness 
matrices for the axial, torsional and flexural vibration of tapered beams to harmonically varying 
forces. However, their approach requires prior knowledge of natural frequencies and modal 
shapes in order to evaluate the system response to transient loads. Hallauer and Liu" have 
developed the exact dynamic stiffness matrix for a straight and uniform beam subjected to 
bending and torsion. The derivation of stiffness matrices for a uniform open thin-walled elastic 
beam under harmonic excitation has been presented by Friberg.I3 In the developments presented 
in References 12 and 13, the governing equations of the beam elements are ~~ solved by the method 
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of separation of variables, and can not be extended to obtain closed form expressions of the 
dynamic influence coefficients for tapered beams without the use of series  expansion^.'^ 

A highly accurate and efficient FEM formulation, based on transformed dynamic stiffness 
matrices, has been successfully employed by Spyrakos and BeskosI5 and Tamma et al.16 and 
Spyrakos' for the dynamic analysis of frameworks modelled with uniform or tapered elements 
and subjected to general transient forces. In these analyses, the transformed dynamic stiffness 
matrices were developed in either the Fourier or the Laplace transform domain. Formulation of 
the transformed stiffness equation in the frequency domain leads to the evaluation of the system 
response from a static-like problem.", ' The system response can be consequently obtained in 
the time domain through numerical inversion." Such an approach retains all the advantages of 
the dynamic stiffness method without requiring knowledge of natural frequencies and modal 
shapes. Questions concerning the relationship between the stiffness matrix for uniform beam 
elements developed from either static displacement functions or exact dynamic governing 
equations have been addressed by He has shown that the stiffness, mass and geometric 
matrices used in conventional finite element treatments of dynamic and stability problems for 
frame structures can be derived from the dynamic stiffness matrix for a beam element. 

In this study, the relationship between the stiffness and mass matrices of tapered bar/shaft 
elements developed from either static displacement functions, or the exact equations for free 
vibration axial/torsional response, is presented. It is shown that the stiffness and mass matrices of 
a conventional consistent mass finite element method formulation are the first two terms of a 
power series expansion of the corresponding dynamic stiffness matrices. The developments also 
allow the identification of the rate of convergence of the series expansion, thus providing the 
means to assess the approximations embodied in finite element formulations based on static 
displacement functions. 

TAPERED BAR/SHAFT ELEMENT 

Consider the linear tapered bar/shaft element a-b shown in Figure 1 with a straight centroidal 
axis and the direction of the principal axis being the same for all cross sections. The general 
expression describing the variation of the cross-sectional area A (x) and the polar second moment 
of area J(x) along the length is given by3 

i 
L z  

1-L-I 

Figure 1. Geometry and end forces of tapered element 
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and 

where 
r = d,/d, - 1 (3) 

and di, Ai, Ji (i = a, b) denote the depth, cross-sectional area and polar second moment of area at 
the ends a and b of the element, respectively, L represents the element length, and m is a positive 
shape factor constant. 

If the geometrical properties of the element at both ends of the section are given, the shape 
factor m can be derived from the expression 

A rather extensive description of various cross-sectional shapes and the corresponding shape 
factors can be found in Reference 3. Although the developments presented in this work are valid 
for the whole range of variation of m, the emphasis will be placed on the practical cases of 
rectangular section with constant width and linear varying depth and circular sections for which 
m = 1 and m = 2, respectively. 

STATIC STIFFNESS AND CONSISTENT MASS FORMULATION 

In order to establish the relationship between a conventional finite element consistent mass 
formulation and a formulation based on a dynamic stiffness matrix, the derivation of the stiffness 
and mass matrices of a tapered member is outlined first for static displacement functions. The 
axial displacement, u(x), and a constant axial load, P, for a tapered bar are related through 

P 
- 

du 
dx EA(x) (5 )  

where E is the Young's modulus of the bar. 

integration with respect to x yields 
Substitution of the expression for the cross-sectional area in equation ( 5 )  and subsequent 

where C is a constant of integration. 
In the following, the formulation will address the commonly encountered cases of m = 1 and 

m = 2 which allow an algebraically manageable treatment of the involved computations, and 
demonstrate the relationship between consistent mass and dynamic stiffness formulations. 

The case of a tapered bar with a rectangular cross-sectional area of constant width ( m  = 1) is 
considered first. After performing the integration indicated in equation (6) ,  imposing the 
boundary conditions, u(x = 0) = 1 and u(x = L) = 0, and introducing the variable 5 = 1 + rx/L, 
where 1 < 4 < 1 + r, the displacement function, ul(x), takes the form 

Analogously, the displacement function, u2(x), corresponding to u(x = 0) = 0 and u(x = 1) = 1 is 
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given by 

Following standard finite element procedures (see e.g. Reference 2), the stiffness and consistent 
mass matrices can be determined from 

and 

where the primes indicate differentiation with respect to 5 and %(l) is the mass per unit length of 
the element. 

In ,view of the expressions (l), (7) and (8), equations (9) and (10) yield the following stiffness and 
mass coefficients: 

r 
Lln(1 + r )  

k l l  = E A ,  

r 
a Lln(1 + r )  

k12 = k 2 ,  = - EA 

r 
Lln(1 + r )  

k22 = E A ,  

and 

1 
1 
1 

- 21n2(1 + r )  - 21n(1 + r )  + r2 + 2r m,, = A ,  @ [- 
p L  (r2 + 2r + 2)ln(l + r )  - r2 - 2r [ 41n2(1 -t r )  

mI2 = mZ1 = A,- r 

r 41n2(1 + r) 

2(1 + r)2(In2(1 + r)  - ln(1 + r)  + r2 + 2r 
41n2(1 + Y) 

m Z 2  = A , -  
r 

The corresponding counterpart expressions for the dfsplacement functions u1 (t) and u2(5)  
along a tapered bar with a circular cross-sectional area (rn = 2 )  are given by 

r 

Evaluation of the stiffness.and mass matrices coefficients through equations (I), (9), (10) and (13) 
results in 
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and 

PL(1 + r)  
6 

m,, = m,, = A ,  

For an elastic tapered shaft with either a circular or a rectangular cross-section area, the 
similarity of the governing equations describing the axial and torsional deformations" allows the 
evaluation of the torsional stiffness and mass matrices from equations ( l l ) ,  (12), (14) and (15) by 
simply replacing the variables A,, E with J ,  and G, respectively, where G is the shear modulus of 
elasticity. 

Consequently, the equation of motion of a structure comprising a tapered bar or shaft and 
subjected to a exciting force { f(t)} can be expressed as 

CM1 (4 + CK1{4 = if(0l (16) 
where [ M ]  and [ K ]  are the consistent mass and stiffness matrices, respectively. 

DYNAMIC STIFFNESS FORMULATION 

The governing equation for the longitudinal motion of a tapered rod is given by 

a2u a [ E A ( x )  g] - p A ( x )  at2 = 0 ax 
where p is the mass density of the bar. By introducing the parameter 5 defined in the previous 
section and by assuming the zero initial conditions, the application of Laplace transform with 
respect to time on equation (1 7) results in 

The general solution of equation (18) contains Bessel functions of the first and second kind with 
complex kernels. Following the procedure indicated by Spyrako~ , '~  one can arrive at the 
following concise form for the general solution of equation (18): 

where C ,  and C ,  are constants, and k = (1 - m)/2 denotes the order of the modified Bessel 
functions 1, and K k .  

The dynamic stiffness influence coefficients Qj can be obtained by imposing the boundary 
conditions on the element with the positive convention shown in Figure 1. In the Laplace 
transform domain, the stiffness equation corresponding to the axial equation of motion, equation 
(16), is given by17 
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SL 
r 

U = - (P /E)”~  

b = (1 + r )a  
and 

= l k ( a ) K k t b )  - z k ( b ) K k ( a )  (23) 

z k ( a ) K k ( b )  - z k ( b ) K k ( a )  f (24) 

where B is subjected to the condition 

The dynamic stiffness influence coefficients for the torsional vibration of a shaft, @>, i, j = 1, 2, 
can be obtained from equations (21) by replacing the variables rn, a, b and H with I ,  a, f l  and D, 
respectively, given by Spyrakos:” 

1 = m + 2  
112 

a =  ’;”(%> 
f l  = (1 + r)a 

D = CGJ,s (&)1’2 /B 

POWER SERIES EXPANSION OF THE DYNAMIC MATRIX 

The following developments demonstrate that the stiffness and consistent mass matrices are the 
first and second order terms, respectively, of a power series expansion of the dynamic stiffness 
matrix. This is attested by expanding in power series the Bessel functions that compose the 
dynamic stiffness coefficients. The series expansions of the functions that appear in a repetitive 
fashion in the dynamic stiffness coefficients ej and 6; are presented in Appendix I. The ensuing 
power series expansions include addition, subtraction, multiplication and division. As can be 
found in Knopp,22 addition, subtraction and multiplication of convergent power series leads also 
to series which converge at least within the common interval of the algebraically manipulated 
series. Caution, however, is required in dividing power series, since the range of convergence can 
be determined through a rigorous treatment of the complex series. In general, division of two 
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convergent power series about a point Z, results in a series convergent within a circle centred at 
Z, and having as a radius the closest singularity to Z ,  of the functions expanded in series in the 
numerator and denominator. Commencing with the rectangular cross-sectional bar element, 
(m = l ) ,  and utilizing the series expansions given in Appendix I, the dynamic stiffness coefficients 
can be expressed in terms of power series of the variable, s, as 

= EAas & B - '  
- H - k h l  = 

a(1  + r)' 12 - 

rE (r2 + 2r + 2)ln(l + r )  - r2 - 2r 
41n2(1 + r )  

- -  - 
L l n ( l +  r )  r 

L3 A,E A12s4  + . . . + 

Eh2 = - H{IL, (b)K, (a)  + Z,(a)K-,(b)) = EA,s - ( 1  + r)(  - KTZ2B-') 8 
1 s2 

rE pL 2 ( 1  + r)'[ln2(1 + r )  + ln(1 + r)] + r2 + 2r 
41n2(1 + r) L l n ( l +  r) + A , - [  r 

+ @A,)' A,E A,,s4 + . . . 

- - 

L3 

where 

81n3(l + r) + 201n2(1 + r) - l n (1  + r)(5r4 + 20r3 + 46r2 + 52r) + 8(r2 + 2r)2 
i28r3 In3 ( 1  + r) A l l  = 

3r4 t 12r3 + 22r2 + 20r + 10 13(r4 + 4r3 + 6r2 + 4r) r2 + 4r + 4 + (27) - 
64r 128r3 In2 ( 1  + r) 16rln3(1 + r) A12 = 

3r3 + 9r2 + 13r + 7 3r4 + 12r3 + 14r2 + 4r - 3 
- 

16r3 16r31n(l + r )  A 2 2  = 

5r4 + 20r3 + 46r2 + 52r + 42 
128r3 In2 (I  + r) 

8r2 + 32r + 32 
128rln(l  + r) + - 

The convergence of the series expansion in equations (26)  is dominated by the transcendental 
equation (23). The variation range for which the series are convergent is specified by equation (24), 
and is given in Appendix I1 for representative values of a and r. It should be noted that, regardless 
the value of r, the series are convergent for a > 0.12. 
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For a taper bar with a circular cross-sectional area, the Bessel functions can be expressed in 
terms of hyperbolic functions:23 

I -  1 / 2 ( ~ )  = ( 2 / 7 ~ ~ ) ' ~ ~  cosh z 

2 coshz 
I-3,2(z) = - /; (- Z - sinhz 

K -  lj2(z) = e-'(71/2~)~'~ 

where B and H can be represented as 

= - /$ sinh(ar) 

In this case, the power expansions of the hyperbolic functions are given by 

(ar)" (ar)6 
2! 4! 6! 

( ~ r ) ~  (ar)5 (ar)' 
3! 5 !  7! 

cosh ar = 1 + - + -  + -  + . . .  

sinh ar = ar + __ + - + -  + . . .  

and 

1 ar 7 
ar 6 360 

(sinh ar)-' = - - - + __ ( ~ r ) ~  + . . . 

In view of the expressions (28)-(30), the dynamic stiffness coefficients can be expanded in power 
series as 

+ . . . }  
= E A , s J { -  p 1 + r + ar - a3r3 45 - (2r - 3)a5r5 

E ar 1080 

+ . . . }  = E A , s & ( l  + r ) 2 {  1 
+ - ar - __ a3r3 (2r + 3)a5r5 

ar(1 + r )  3 45 + 2160(1 + I )  
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It should noted that, in this case, the series expansions in equations (31) are convergent in all 
the real field 0 < ar 6 C O .  

By comparing the series expansions of the Qj given by equations (26) and (31), it is observed 
that the first terms of the expansion series are equal to the corresponding kij stiffness coefficients 
given by equations (11)  and (14), while the second terms are identical to the mij consistent mass 
coefficients expressed by equations (12) and (15), respectively. Consequently the dynamic stiffness 
matrix in equation (20) can be written in the following series form: 

= [ K ]  + [ M ] s 2  + [A1]s4 + [,&Is6.. . 132) 

where [ K ]  and [ M ]  are the stiffness and mass matrices developed with the aid of static 
displacement functions. The matrices [Al] and [ A 2 ]  are high order terms of the power series 
expansion of the dynamic stiffness matrix. According to the discussion on the similarities between 
bar and shaft elements, a series expansion of the dynamic stiffness matrices for a tapered shaft 
element will result in an expression similar to equation (32). 

CONCLUSIONS 

For tapered bar or shaft elements, it has been demonstrated that the stiffness and consistent mass 
matrices based on static displacement functions can be derived from the associated dynamic 
stiffness matrices. This is accomplished through a power series expansion of the Bessel functions 
that comprise the dynamic stiffness matrices. In all cases, the range of convergence of the series 
has been determined, thus identifying some approximations inherent in stiffness and consistent 
mass formulations based on static displacement functions. It is expected that the approach can be 
extended and similar conclusions can be drawn for tapered flexural beam elements; nevertheless, 
the computational effort is anticipated to be rather cumbersome. 

APPENDIX I 

The power expansion of the Bessel functions appearing in the dynamic stiffness influence 
coefficients is given by the following expressions. 

For a rectangular cross section, m = 1 ,  with k = 0 and n = - 1 

let 1 + r  = R and b = R a  

then 

1 1 1 
4 64 

Z,(a) = 1 + - a 2  + -a4 + ~ 2304 a6 + . . . 

1 1 1 
2 16 384 

z-l(a) = Z,(a) = - a  + - a 3  + - a 5  + . . 

3 1 1  + -u4 + ~ 5616a6 + . . . 
128 

5 
576 

+ -a5  + . . . 
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where y = 0.5772157 is Euler's constant. Also, 

5181n(u/2) + 299 5181n(a/2) - 219 2591n(u/2) - 239 
u 4 +  . . .  

16576 
u2 - - 

518 2072 
KO@) = - 

(A21 

u 3 +  . .  1 7771n(u/2) + 60 31081n(u/2) - 2901 
U +  49728 1554 

K - ~ ( u )  = - + 
U 

In view of equations (AI) and (A2) the following expansions can be obtained through algebraic 
manipulations. 

B = Io(a)Ko(b) + Io(b)Ko(4 

(R2 + 1)lnR - R2 + 1 
4 

(2R4 + 8R2 + 2)InR - 3R4 + 3 
128 u4 + . . . (A3) = -1nR-  u2 - 

1 B - ' =  - __ 
In R 

(R2 + 1)lnR - (R2 - 1) 
4 ln2 R 

U 2  + 
21n3R(3R4 + 4R2 + 3) - 13(R4 - 1)lnR + 8(R4 - 2R2 + 1) 

128 ln3R 
u 3 +  . .  - 

KT, ,  = IO@)K-l (4  + I- ,(a)Ko(b) 

1 R2 - 21nR - 1 
4 

R4 - 8R21nR + 4R2 - 41nR - 5 
64 

u 3 +  . . .  U +  - -  - + -  
U 

(A41 
21n2R + 2InR - R2 + 1 

U 
1 - K T , , B - ' =  ~ - 

ulnR 4 ln2 R 

- 81n3R - 201n2R + (5R4 + 16R2 - 2l)lnR - 8R4 + 16R2 - 8 
128 In3 R 

- u 3 +  " .  

KT22 = [-1(@Ko(4 + [0(4K-l(W 

1 - +  
ar 

2R21nR - R2 + 1 
4R 

4R41nR - 5R4 + 8R21nR + 4R2 + 1 
64 R u 3 +  . . .  U +  ~~ 

- -  

(A51 
2R21n2R - 2InR + R2 - 1 

4R In2 R 
U 

1 
uR In R 

- KT2,B- '  = ~ + 
(24R4 + 32R2) (28R4 - 32R2 - 16) 5R4 + 16R2 + 21 

- ~- 
+ {( 128R 128R In R 128Rln2R 

8R4 - 16R2 + 8).,} + . . .  + 128R In3 R 
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Evaluation oft3 = Z,(a)K,(b) - I,(b)K,(u) 

a r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 

0-02 3.9332 00000 - 0.2624 0.0000 00002 
0-04 0.0005 3.1543 3.0743 0~0000 2.9314 

0~0000 006 0.001 1 0~0000 0~0000 0~0000 
0.08 0~0000 - 0.1823 0.0000 - 0.3365 - 0.0016 
010 00000 - 0.1823 - 2.43 13 - 0.3366 - 2.4347 
0-12 - 0.0953 - 0.1823 - 0.2624 - 0.3366 - 0.4057 

a r = 0.6 r = 0.7 r = 0.8 r = 0.9 r = 1.0 

0~0000 0.02 - 4'0291 0~0000 - 0'5878 3.3868 
0-04 2.8670 - 0.5307 2.75 19 0.0000 2,6443 
0.06 2.4664 - 2.9329 - 2.9388 2.2928 - 0.6936 
0.08 2.1847 - 0.5309 - 2.6570 2.0156 - 2.6602 
0.10 - 2.4365 - 0.5311 - 0.5884 - 2.4429 - 2.4453 
0.12 - 0.4704 - 0.5313 - 0.5887 - 0.6431 - 0.6948 

a r = 1.1 r = 1.2 r = 1.3 r = 1.4 r = 1.5 
~~ 

0-02 0~0000 0.0005 0~0000 
0.04 0~0000 2.5493 25050 
0.06 - 2.9419 - 0.7892 o*oooo 
0.08 - 07429 0~0000 0~0000 
0.10 - 0.7434 - 2.4504 - 2.4531 
0.12 - 0.7441 - 0.7912 - 0.8363 

U r = 1.6 r = 1.7 r = 1.8 

00000 3.1 126 
0~0000 24220 

- 2.6677 1.751 1 
- 2.9455 - 0.9176 

- 2.4560 - 2.4590 
- 0.8796 - 0.9213 

r = 1.9 r = 2.0 

002 3.0734 3.0357 0~0000 0~0000 0~0000 
0.04 2,3830 2.3454 2.3093 - 3.3464 - 1.0998 
006 - 2.9481 - 2.9495 - 1.0317 - 1.0671 - 2'9540 
0.08 - 0-9582 1.6778 - 2.6765 - 2.6789 1.5782 
0 10 - 0.9597 - 2.4653 1.4360 - 2.4722 - 2.4758 
0.12 - 09615 - 1.0003 - 1.0378 - 1.0741 - 1.1094 

a r = 2.1 r = 2.2 r = 2.3 r = 2.4 r = 2.5 

002 2.8978 00000 2.8382 - 4.0285 - 1.2532 
0.04 - 3.3480 - 3.3489 - 1.1957 - 1.2257 - 1.2549 
0.06 - 2.9556 - 2.9573 - 2.9590 0.0000 - 0.0009 
0.08 0~0000 - 0.0016 0~0000 - 2.6924 1.4360 
0.10 - 2.4795 - 2.4834 - 1.2047 - 2.49 15 - 2.4957 
0.12 - 1.1437 - 1.1770 - 1.2095 - 1.2412 - 1.2721 
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