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Abstract-A multiple infinite trigonometric cum polynomial series method for solving initial-boundary 
value problems governed by hyperbolic differential equations with variable coefficients is developed. The 
method proposed herein can be easily applied to a broad class of engineering systems including those cases 
where boundary conditions may vary with time. In the proposed mathematical technique, the solution 
form is assumed as a combination of infinite Fourier series and polynomial series of nth order, where 
n is the order of the differential equation. The coefficients of the polynomial series are obtained as 
functions of undetermined Fourier series coefficients by satisfying the initial-boundary conditions. The 
variable coefficients are expanded in appropriate half-range sine or cosine series. Insertion of the above 
Fourier-polynomial series solutions into the differential equation and application of orthogonality 
conditions leads to a linear summation equation which can be solved in open form. However, the authors 
have developed a closed-form series solution consisting of a highly efficient algorithm. The major 
advantage of this technique is the development of a solution algorithm, coupled with the multiple infinite 
trigonometric cum polynomial series solutions, leading to fast converging series solutions. A representative 
initial and boundary value problem governed by hyperbolic partial differential equations of variable 
coefficients is presented herein to demonstrate the efficiency and accuracy of the method. 

INTRODUCI’ION 

Exact solutions of boundary-value problems described 
by differential equations with variable coefficients can 

be obtained only for a limited class of problems. A 
similar situation exists if the boundary-value problem 
is formulated in an integral equation form. Indeed, 
even those problems that can be solved in exact closed 
form may preferably be treated through approximate 
or numerical methods, because evaluation of the 
exact solution may be much too complicated [l]. 
Among the most known classical numerical tech- 
niques are the variational methods as well as the 
method of weighted residuals (MWR) [2,3]. Vari- 
ational methods employ variational principles to 
obtain approximate solutions as continuous func- 
tions of a position in the media. However, use of 
a variational technique requires the existence of a 
functional which is not available for all classes of 
engineering mechanics problems [3,4]. Whenever 
applicable variational techniques allow evaluation of 
an approximate solution through minimization of the 
appropriate functional. 

Under the class of MWR, a wide variety of 
approximate techniques, such as the collocation, 
Galerkin’s and Trefftz’s methods are included. All 
MWR assume trial solutions usually in a polynomial 
form with undetermined coefIicients. Each method 
uses a different approach to evaluate the coefficients 
through minimization of the error in a weighted form 
either within the domain or along the boundary of 
the system under consideration [S, 61. Comparative 
studies on MWR as well as representative applica- 
tions can be found in the text of Finlayson[7J 

The classical approximate methods and the advent 
of powerful computers contributed to the emergence 
of finite-element, finite-difference and boundary- 
element methods [&lo]. Both finite-element and finite- 
difference methods determine unknown physical 
quantities by reducing the infinite degrees of freedom 
of a continuous system to a finite set amenable 
to computer-aided solutions. In particular, finite- 
difference techniques lead to a finite set of unknown 
quantities by defining a series of modes at which the 
discrete version of the differential equation is satisfied 
[8]. In finite-element methods, the differential equa- 
tion is satisfied in an average sense over a region or 
an element [l 11. The two techniques require discretiz- 
ation of the domain as well as the boundaries of 
the system under consideration [8,9]. Boundary 
element methods use interpolation functions that 
satisfy the governing equations in the domain but 
not the boundary conditions. Thus, they require 
discretization of the boundary only, and lead to 
significant reduction of computational efforts over 
domain techniques [ 10, 121. Use of boundary-element 
methods requires the existence of appropriate funda- 
mental solutions or Green’s functions. Both bound- 
ary and domain methods lead to a large system of 
equations resulting from refined time and/or spatial 
discretizations. 

It is well known that the classical analytical methods 
cannot be applied to solve boundary-value problems 
of irregular domains with general boundary con- 
ditions. However, the majority of the problems with 
arbitrary domains can be solved through numerical 
schemes as finite-element or finite-difference methods. 
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In a broader context of solving boundary-value prob- requiring the trial solution to satisfy the differential 
lems of arbitrary shapes, discretization of a con- equation. Thus, an infinite set of simultaneous equa- 
tinuum with a minimum number of discrete elements tions with the undetermined coefficients as unknowns 
is essential to minimize the number of unknowns and, is obtained. The proposed method is general, and 
if possible, satisfy compatibility along the boundaries can be employed to solve multi-dimensional initial 
of contiguous elements. Such an approach would not boundary-value problems. However, the treatment of 
only reduce time and effort to obtain the solution, but a one-dimensional engineering system under various 
improve the accuracy of final results, and would even dynamic loading conditions is presented herein to 
minimize complexities while searching for eigenvalues facilitate the understanding and attest to the accuracy 
of initial-value problems. and efficiency of the method. 

The solution scheme proposed herein is a product 
of undetermined coefficients and a sum of trigono- 
metric and polynomial series. This scheme has been 
used to solve a wide range of initial as well as 
boundary-value problems. The assumed set of poly- 
nomials with undetermined constants is complete and 
a class of (n-l), where n is the order of differential 
equation. This set is coupled with trigonometric series 
and forced to satisfy the boundary conditions to 
obtain the undetermined constants of the polynomial. 
Once the unknown variable coefficients of the given 
problem are expressed in trigonometric series, inser- 
tion of these series and the above-mentioned solution 
scheme into the governing partial differential equa- 
tion, and application of orthogonality conditions, 
would lead to an infinite summation equation as a 
function of undetermined coefficients of the originally 
assumed solution scheme. This summation equation 
has been solved for these undetermined coefficients 
either in open form by considering the first few terms 
of the equation or in closed form through a special 
algorithm that has been derived herein, i.e. various 
steps of this derivations are shown in the Appendix. 
Examples are presented to formalize the above 
concepts of the proposed methodology. 

Consider the following time dependent hyperbolic 
differential equation defined in a domain R 

Aw =f (1) 

where A is a general linear differential operator 
involving spatial and time derivatives of an unknown 
function w, and f denotes a given function. On the 
boundary S of a, w will have to satisfy boundary and 
initial conditions. 

Assume the following expression to be a trial 
solution of eqn (1) 

k=l I-1 

+ 2 i bijx$-‘ti-’ (2) 
i=lj=l 

Several advantages of the proposed methodology 
are: 

where the akl are undetermined coefficients; kxx/L, 
int / T are known, linearly independent mode shapes 
or coordinate functions of x and t, respectively; b, are 
constants to be determined by satisfying the initial 
and boundary conditions; m and n are the number 
of initial and boundary conditions, respectively, 
associated with complete sets of polynomials; L is the 
length of a spatial domain and T is the period of the 
Fourier series expansion. (1) 

(2) 

(3) 

(4) 

(5) 

evaluation of response of physical systems with 
variable properties over their domains; 
minimization of number of finite elements in the 
domain; 
fast convergence of the summation equation that 
can satisfy arbitrary boundary conditions and be 
truncated at any desired level of accuracy; 
extrapolation of final results of higher accuracy 
through the established results for arbitrarily 
determined truncation levels; 
improved accuracy and computational efficiency 
through the proposed scheme without any loss 
of generalities of the physical system. 

BASIC METHOD 

For a well-posed initial boundary-value problem 
expressed in the form of a system of differential equa- 
tions, the present approach assumes a trial solution 
comprised of Fourier series with undetermined co- 
efficients and a complete set of polynomial series 
dependent on boundary and initial conditions. Evalu- 
ation of the undetermined coefficients is achieved by 

The coefficients b,j can be expressed in terms of 
ak, and the inhomogeneous boundary and initial 
quantities by satisfying eqn (2) with the initial and 
boundary conditions. Thus eqn (2) takes the form 

w(x,t)= .f f a,[ 
k-l I-1 1 

x sin 
[ . 

7 + #i(t) 1 * (3) 

The mode shapes within the brackets of eqn (3) 
satisfy the initial and boundary conditions, and are 
a set of complete and linearly independent functions 
over the domain LI. 

The method proceeds by expanding the variable 
coefficients of operator A in half-range Fourier series. 
Then substitution of the Fourier series expansion 
of variable coefficients and the assumed solution 
into eqn (1) as well as application of orthogonality 
conditions leads to a summation equation in terms of 
the undetermined coefficients, (It,. 
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Fig. 1. Tapered beam of rectangular section with dynamic loads. 

where Biik and q$, are known functions of the 
Fourier expansions of variable coefficients, boundary 
conditions, and the function, f, of eqn (1). 

Accuracy of the method depends on the number 
of terms that are summed in the infinite series expan- 
sion (3). Thus, improvement of solution accuracy 
is achieved without redefining the mode shapes, 
incorporating additional shape function or employ- 
ing a more refined discretization of the domain f2, as 
is required by the finite-element method. 

It should be mentioned that Us, may be obtained by 
any weighted residual method that operates on the 
form given in eqn (3). Variational methods have 
also been used to find a,, depending on the class 
of problems under investigation [6]. However, it is 
shown herein that through simple orthogonalization 
techniques, a set of simultaneous equations of fast 
convergence can be obtained while solving a differ- 
ential equation as defined in eqn (1). A considerably 
simpler development of such a technique has been 
presented by the authors for steady-state problems 

P41. 

EXAMPLES 

To highlight the most important features of 
the method, the forced vibration phenomena of a 
rod with variable cross-sectional area subjected 
to transient loads (Fig. 1) are studied. Under the 
assumption of small deformation theory and linear 
elastic behavior, the axial response, u(x, t), of a rod 
with linearly varying cross-sectional area (Fig. 1) 
is described by the hyperbolic differential equation 
with two independent variables x and t: 

a% I au i a% -W,t) 
s+;JyzJjT=yj-- (5) 

0 x 

1 
2.25’ 

! 

where F(x, t) is the forcing function, p the mass 
density, E the modulus of elasticity, A,, the cross- 
sectional area at the tip, A, = A,x/a and Cg = E/p. 
The boundary and initial conditions for the above 
problem are assumed respectively as 

at4 

ax Xc0 
=0 and u = 0 (6a) 

x-b 

a4x,o) o 

U(X,o)=at = . 

The Fourier cum polynomial series solution in the 
form of eqn (3) that satisfies eqns (6) is 

u(x,t)=$ f .’ is, j_, u,(sin$ -7) 
x sinjnx r _in I+Z(b-X)coSp; . . 1 

(7) 
L -I 

Inserting eqn (7) into eqn (5), expanding l/x in half 
range sine series and applying orthogonality con- 
ditions yields a summation equation similar to eqn (4) 
for general loading as 

-/s /=I 
uk,sj/ + C ui/ + sjl 

where S,, and Fij are given explicitly in the Appendix. 
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Table 1. Maximum amplitudes at tip and center 

Prop. theory? NASTRAN 
x 10-4in. x IO-‘in. 

T Center Tip Center Tip 

Load of Fig. lb 
0.1 6.52 5.64 
0.115 7.01 6.06 
0.2 5.63 4.84 
0.3 5.33 4.84 8.102 8.103 
0.5 3.39 2.91 

Load of Fig. lc 
0.1 6.52 5.64 
0.2 8.86 7.59 8.102 8.103 
0.5 9.92 8.50 

t These values are obtained for two terms of the series in 
eqn (8). 

For the rod shown in Fig. Ic, which is subjected 
to an axial concentrated load at the middle, the 
above summation eqn (8) is solved in open form. 
The properties of the structure are characterized by 
a Young’s modulus E = 30,000 ksi, length L = 
1500 in. and mass density (p) = 75 x IO-’ K set’ in4. 

Response amplitudes at the tip and the point 
of application of the load of a tapered cantilever 
rod under two types of dynamic loads are given in 
Table 1. In addition, Table 1 contains results obtained 
from a finite-element analysis using NASTRAN. 
In the finite-element analysis, the tapered rod was 
discretized into eight uniform axial elements. 

The results of Table 1 clearly indicate that the 
accuracy of the axial response amplitude of a tapered 
rod greatly depends on the period T of the Fourier 
series expansion. As can be observed, the response 
amplitude for a load of limited duration (Fig. 1 b) is 
found to be very close to the results from the 
finite-element analysis (NASTRAN) when the period 
T of the Fourier series expansion is in the vicinity 
of the duration of the load. This improvement in 
accuracy can be explained from the fact that the 
modified period is very close to the zero slope of 
the response function. For this loading, a Fourier 
expansion with larger T leads to lower magnitudes of 
response amplitude and these errors can be avoided 
by accounting for many of the higher-order terms of 
the series given in the summation solution. Therefore, 
it appears that the transient response of the system 
can be accurately predicted by appropriately choos- 
ing the period of the Fourier series whereas the 
steady-state response can be obtained either by con- 
sidering many terms of the Fourier series expansion 
or reducing the problem from a hyperbolic to an 
elliptic differential equation [14]. 

As can be seen in Table 1, the response amplitudes 
of the rod with variable cross-sectional area under the 
loading shown in Fig. Ic do not depend on the choice 
of period T. Gibbs phenomenon has been noted in 
the numerical evaluations for response amplitudes. 
Hence, utilization of correction factors such as the 
ones suggested by Lanczos [15] could improve the 

accuracy of the final results. Additional improve- 
ments in the accuracy of response amplitudes can 
be achieved by shifting the response to perturbate 
around a constant value, i.e. add or subtract it from 
the STATIC response and then evaluate the response 
amplitudes. 

From the extensive numerical investigations con- 
ducted by the authors, the most critical step to obtain 
accurate response amplitudes is the choice of period 
T. Additional knowledge on the selection of T has to 
be pursued on a systematic theoretical basis. 

CONCLUSIONS 

A general method to solve initial boundary-value 
problems with variable properties and arbitrary 
boundaries is developed. Solutions are given in closed 
form, and obtained with the aid of Fourier cum 
polynomial series expansions. In order to elucidate 
the method and attest to its accuracy, the response of 
a rod with variable thickness subjected to transient 
loads is determined. The numerical evaluations are 
carried out by using a highly efficient algorithm for 
summation equations that are developed as a part of 
this research. 

The proposed method is highly sensitive to the 
choice of the period T for loadings of limited time 
duration. However, the accuracy of response ampli- 
tudes does not greatly depend on T for dynamic loads 
of infinite duration. Further investigations on the 
appropriate selection of period T have to be system- 
atically carried out along the lines suggested in this 
text. 
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APPENDIX 

Closed form series solution of a jrst -order summation equa - 
tion 

Consider the following first-order summation equation 
that typically results in the solution scheme of a partial 
differential equation of two independent variables based on 
Fourier cum polynomial series. 

h,+ f AeIhi, = 4i for i = l,(l), co 
II = I 

(Al) 

A similar mathematical operation is repeated several times 
to derive the following solution form of the summation 
eqn (Al) 

where i,, is a dummy index varying from 1 to co. 
Equation (A7) can be rewritten, for a reasonably large 

number of in values and for converging A,min _, and &, as 

where Ai, and qjj are given converging functions and the 
unknown to be solved from eqn (Al) is hi. 4, = 4*,+ ; (-ljN fi 2 A,,_, &. w9 

Equation (Al) can be written as by changing i to i, and N-I ( n=, ,.=I > 

i, to i2: 

h,, + : A,,$, = +,, (A21 
Equation (A8) represents the final solution form of the 

first-order summation equation given in eqn (Al). 
ll Deoendina unon the desired degree of accuracy, the series 

Sum eqn (A2) with respect to the dummy index i, after 
multiplying it with A,, 

Solving for 

: A,,& 
i, = I 

from eqn (A3) and substituting into (Al) yields 

of eqn (AS)<an be truncated by-considering only the first 
few of its terms. Typically, iV of 3 or 4 would be more than 
adequate to obtain results of high accuracy. If one needs 
the value of h, for example, a (50 x 50) matrix has to be 
inverted through open form techniques. However, from 
eqn (A8), h, can be routinely obtained by tixing a value of 
m as 3 or 4 and inserting i,, as 50. Finally, the total number 
of multiplications in solving for h, through eqn (A8) can 
be very small when compared to Gaussian elimination 
technique. 

The S, and FLj of eqn (A8) can be evaluated from: 

The second term of eqn (A4) is solved for in the manner 
identical to the second term of eqn (Al) which is the first dx 
term of eqn (A3), i.e. summing on dummy indices i, and it 
of eqn (A4) gives: 

and 

$, -%ii;, Ai&, 

T2 
F,J = 

0 

ilrt, t,T int, 

- iz, 41ig, 4, ii, 4ti J, Aw,Hti in 
sin- --cos- 

T in T 
P 

loading corresponding to Fig. lb 

Solving for the second term of eqn (A4) from eqn (AS) gives: 
‘sin? -$Jcosin 

loading corresponding to Fig. lc. 


