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A time domain Boundary Element-Finite method is employed to determine the dynamic response 
of flexible surface two-dimensional foundations under conditions of plane strain placed on an 
elastic soil medium and subjected either to transient external forces or to obliquely incident seismic 
waves. The elastic, isotropic, and homogeneous soil medium is treated by the time domain Direct 
Boundary Element Method, while the flexible foundation is treated by the Finite Element Method. 
The two methods are appropriately combined through equilibrium and compatibility 
considerations at the soil-foundation interface. Parametric studies examining the effect of the 
relative stiffness between the foundation and the soil and the spatial distribution of the dynamic 
disturbances on the foundation response are presented. 

INTRODUCTION 

The dynamic analysis of foundations placed on an elastic 
soil medium has received considerable attention in recent 
years. In the great majority of cases, the assumption is 
made that the foundation is rigid. An almost complete 
review ofthe research pertinent to the dynamic analysis of 
rigid three-dimensional (3-D) and two-dimensional (2-D) 
foundations on an elastic soil can be found in Karabalis 
and Beskos’ and Spyrakos and Beskos2, respectively. 
However, the rigid foundation assumption which appears 
to be reasonable for massive structures such as nuclear 
power plants may be inappropriate for many other 
structures such as buildings with large plane dimensions 
on a mat foundation, buildings with a stiff central core 
combined with flexible frames on a mat foundation. 
concrete gravity dams, and earth dams3,‘. GoschyS,“. in 
his work on soil-structure interaction of tall large-panel 
buildings, mentions that field observations have proven 
that foundations of such buildings can be considered 
infinitely stiff in the shorter and flexible in the longer 
direction. On the basis of full-scale measurements on a 
particular structure, Wong, Luco and Trifunac’ found 
that the rigid mat assumption leads to acceptable results 
describing the overall motion of the superstructure. but 
does not represent properly deformations close to the 
foundation level. This paper deals with the determination 
of the dynamic response of flexible 2-D surface 
foundations. 

While the effect of mat flexibility has been extensively 
treated under static conditions’, such a treatment for the 
dynamic case appears to be rather poor. Oien’ obtained 
the response ofa flexible strip-footing subjected to surface 
waves by expanding the plate motion in terms of natural 
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modes and then forcing the model response into 
compliance with the wave excitation through satisfaction 
ofcompatibility and equilibrium on the surface ofthe half- 
plane. Oien’s work was extended by Iguchi”,” to 
determine the response of a rectangular plate in smooth 
contact with a linear half-space. Lin” determined 
analytically the harmonic vertical and rocking motion of 
a surface flexible disc placed on a viscoelastic half-space. 
while Krenk and Schmidt13,‘4 considered also 
analytically symmetric and asymmetric vibrations of an 
elastic circular plate resting on an elastic half-space. 
Treatment of soil-structure interaction problems by the 
Finite Element Method (FEM) presents certain 
disadvantages caused by the fact that a semi-inlinite 
medium is represented by a finite size model”. A very 
successful approach for the treatment oftwo-dimensional 
linear soil-structure interaction problems by the FEM, 
which is free of the disadvantages concerning the soil 
model, is the substructuringmethod ofchopra and his co- 
workers3,“~“. The effect of the flexibility of surface 2-D 
foundations has also been discussed by Aydinoglou and 
Cakiroglou” on the basis of Chopra’s work”. 

Lately. a relatively new technique. the Boundary 
Element Method (BEM), has been successfully 
implemented for the analysis of dynamic soil-structure 
interaction problems involving 2-D and 3-D rtgtd 
foundations on elastic half-space”~“. This method IS 
ideally suited for engineering problems involving finite 
domains because it reduces the spatial dimensions of the 
problem by one and takes into account the radiation 
conditions at intinityzO. Whittaker and Christiano”,” 
and Iguchi and LUCO~~ combined the BEM with the well- 
established Finite Element Method to study the problem 
ofthe dynamic behaviour ofan elastic flexible rectangular 
plate placed on an elastic half-space and sub.jectcd to 
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either harmonic external forces or oblique seismic waves. 
In all cases, with the exception of references 1, 2 and 24, a 
frequency domain BEM formulation has been employed 
to evaluate the response of foundations to dynamic 
disturbances. A frequency domain formulation, however, 
does not permit an extension to the case of nonlinear soil 
behaviour. 

In this paper, the dynamic response of a massless 
flexible two-dimensional surface foundation placed on a 
homogeneous linear elastic half-space representing the 
soil medium and subjected either to external dynamic 
forces or obliquely incident seismic waves of a general 
time variation, is numerically obtained. The solution of 
the present boundary value problems is based on a hybrid 
Boundary Element-Finite Element formulation. 
Following the methodology presented in detail in 
references 2 and 25, the foundation and the soil 
foundation interface are discretized into a number of line 
elements, while the time variation ofthe externally applied 
forces is approximated by a sequence of rectangular 
impulses of equal duration. Then, on the assumption of 
constant variation of displacements and tractions over 
each element and time step, the FEM is used to determine 
the stiffness matrix of the flexible footing and the BEM is 
employed to determine the dynamic stiffness matrix ofthe 
soil medium. The response of the foundation to an 
impulse disturbance is obtained through an appropriate 
coupling of the compatibility and equilibrium 
requirements at the soil-foundation interface. Finally, the 
foundation response to the externally applied forces is 
determined by superimposing all the individual impulse 
responses. Solutions are presented for a flexible strip- 
footing subjected either to a point, uniform pressure and 
moment loadings or to seismic waves. For each type of 
dynamic loading, parametric studies are conducted to 
examine the effect of the relative stiffness between the plate 
and the foundation on the response of the plate. 

The main advantage of the proposed time domain 
BEM-FEM formulation is that, unlike frequency domain 
techniques, it provides directly the transient response and 
forms the basis for extension to the case ofnonlinear soil 
behaviour ~' 2.2 5. 
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Fig. I. Geometry of a ,flexible strip-foundation subjected 
to a rectangular impulse .force 

t'(x~, t) at the soil-foundation interface satisfies the integral 
equation-" 

½r(~, t ) = j ,  r;z[,~, t: x/r22(x, t)] dS(x) (2l 

where S denotes the soil-foundation contact area and the 
component v2z of the Stoke's tensor for the infinite elastic 
space is explicitly given by 27 

I { ~ I  ( r ) L " l '  dn ,,~[~.t:x,'~:c~.t)]=~p n t -~ ( , , ._r2) , ,  - 

; " c , , )  . . . . . .  

• t'r22 t . . . .  t' dr 
0 \ CI 

- H  t-~.~ (n~_,.~),  ., 

" "  } 
"Off - r2) 1:2 (3) 

FORMULATION AND SOLUTION 

Consider the flexible surface massless strip-footing of Fig. 
1 in frictionless contact with a homogeneous isotropic 
linear elastic soil medium and subjected to a rectangular 
impulse force at time step m. Denoting the vertical 
displacement of the foundation by t,(x t, t), the normal 
contact stress distribution at the soil-foundation interface 
by r22(x ~, t) and the magnitude of the vertical rectangular 
impulse force by p(x~, t). the governing equation of a plate 
strip-foundation can be expressed a s  26 

D ?%(x~,  t) 
[.x'~ =P(Xl't)--Z22(Xl"t) (1) 

where D =Eet  3/12( 1 - t,~) represents the flexural rigidity 
of the foundation plate with Ep denoting the Young's 
modulus, tp the thickness', and % the Poisson's ratio of the 
plate, respectively• Under the assumption of zero initial 
conditions and body forces, the vertical displacement 

r~=xi-~,i, r "=ix~-~ iXx i -~) ,  

n2=r2+x~;  ( i=I ,2)  (4) 

where p represents the density of the soil medium. H is the 
Heaviside function, and c~ and c z are the dilatational and 
shear wave velocities, respectively. 

By discretizing the strip-foundation and the soil 
foundation interface into a Q number ofelements ofequal 
length L, the time t into n intervals of equal duration At 
and assuming a constant distribution of displacements 
and tractions over each element and time interval, 
equations 11) and (2) can be reduced to a set of linear 
algebraic equations. Thus, through standard finite 
element procedures zS, at a time step N for an impulse 
force acting at time rn At, equation (1) can be expressed in 
the form 

K:, K22_I(o~'J=(M~)-[O J (5) 

where K~j (i= 1, 2 and j =  1, 2) are the stiffness elements of 
the total stiffness matrix for the elastic strip-foundation 
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obtained by appropr ia te  superposi t ion of the element 
stiffness matrix.  ' x, ,u , and 10' ,  represent thenodal~er t ica l  
displacement and rotat ion vectors, respectively. ', P~ ', and 
,M~I are the nodal external forces acting on the 
foundat ion and J P ~  is the vector of the nodal forces l ' ~ 2  I 

associated with the contact  stresses. Fur thermore ,  the 
integral equat ion [2) can be expressed in the discretized 
form 

" " [ D G " ] ' ,  ' ' ' 2 ,u  , =  t \ , + , P G  ', (6) 

where [fi\', and ',t", are the vertical displacement and 
traction vectors, respectively, at the centres of  the 
elements at the soi l-foundation interface at time N At due 
to an impulse force at time m At. while the terms of  the 
diagonal matrix [ D G ' ]  and the ~.ector ',PG \~, are 
explicitly given in references 2 and 25. Equat ion (6) solved 
for the traction vector yields 

, ' t"  = [ D G ' ] - '  ½:fi", - ' , P G '  ,') (7i 

Consequently.  the vector of  the resultant forces 
corresponding to the contact  stresses over the soil- 
foundation interface can be obtained from 

I " .\ I ,R2, = L [ D G "  ] ~(½{ti' } - ', P G '  {) (8) 

In order  to achieve compatibi l i ty  between the 
deflection of the foundation and the mot ion  of  the ground 
at the interface, the average displacement over an element 
q is approx imated  by the mean value of the nodal 
displacements at the ends of  the element q . . . . .  

- \  1 . \  ." ,  Z'q = ~ l  lq-'F t 2q) q= 1.2 . . . . .  Q (91 

or in matrix form for the whole foundation, by 

' - "  = [ T ] '  " ,U ( lO) I U I J 

where the matrix [T] is o f  order  Q x (Q + 1). Similarl).  the 
~.ectors of  the resultant forces ' - ' ' ,Rz~ associated with the 
contact  tractions ' t  ~ and the nodal forces ' ' , R,  ' are I -  ) _ ~  

related through 
I % I - \ )  ~R2~ = [ T ]  ~ , R 2 ,  l I l l  

u,here the superscript  T denotes matrix transposit ion.  
Equat ions (5} through (11) form a system of linear 

algebraic equations,  which can be solved for the unknown 
vertical displacements  ',u ~ ~, and rotat ions ',0' ,' to ~m"e 

~ U  ~ =  1 - 

- [ K , a ] [ K ~  ] - ' [ u ~ , ] )  1 

.(,p,., + L [T ]~  -~ , , ~, [ D G " ]  ' , P G ' ,  

_[KI2][K22 ] 1,  ,,,, ~Ms~) (12) 

(0",  I l l  ( "~tlm I U \  , , = [ K . ; ] -  , , . . .3  ', - { K . . , ] ,  1) (13) 

It should be noted that the matrix product  
(L..2)[ T] r [ G " ]  ~ [ T] physically represents the resistance 
developed by the soil at the soil-foundation interface. 
Once the vector  {U ~'} of the nodal displacements  is 
calculated, the vector  {u'~'} of the contact  displacements  
can be obtained from equat ion (10). Then. the tractions at 
the soil-foundation interface can be calculated from 
equat ion (7). 

The response of the flexible s tr ip-foundation subjected 
to a sequence of  M rectangular  impulses approx imat ing  

an external load of a transient time variat ion can be 
determined by employing the principle of  superposi tum 
on the individual impulse responses given b} equation~ 
(121 and (13). as described in reference 2. 

( 'ons ider  now the same str ip- toundat ion placed on a 
frictionless elastic half-space and subjected to a train of  
oblique seismic waxes, as shown in Fig. 2. B> adopt ing the 
procedure suggested by Thau- '".  the total xcrtical 
displacement field ]u~(.\~.t){ at the contact  area can bc 
decomposed  into two parts, i.e. 

' , U { \ l .  1) '  i = ' , u r l . \ . l , t ) :  4 'u.,i.x.l. t)' ' 114l 

where ' ,u / l \ l . t ) :  and {u,lx 1,t){ are the xertical 
displacement vectors of  the free and the scattered fiekb,. 
respectively. 

If the t ime variat ions of  both the free and the scattered 
cont inuous fields are approx imated  by sequences of  M 
rectangular  impulses, then for a t ime step N equat ion ( 141 
can be expressed into the following discretized form 

I i ~ \  I ( - k  I I - \  ) , = , % - , + , u ~  , f o r . \ = m  

and q 151 

' , f i ' ' ,= ' , f i~ ' ,=10  ~, tbr N > m  
I \ ) I - \  I I - \  where ~u ,. ~Ur ~ and ~u~ j~ represent the total, free. a n d  

scattered vectors of  the vertical displacement fields at the 
centres of  the elements at a t ime step N. respectively. In 
essence, equat ion (14) expresses the fact that the response 
of the  massless foundat ion at a t ime step N is affected onl\  
by the impulse seismic dis turbance applied at that 
part icular  time step. Since the vector {PG~I expressing 
the effect of  all the previous time steps m equat ion (6) is 
zero. the scattered field displacements  ',u,~[ can bc 
obtained at a t ime step N by 

! ' - "  [ D G '  ] ' , t '  ' 2~u~ , = ~ t161 

and the vector of  the resultant forces at the contact  a r e a  is 

related to the contact  stresses through 

L - \  t L , R , ,  ~ , - [ D G ' ]  " ' '  = - u~ , ( 17,1 

Fur thermore .  the force displacement expression 
corresponding to equat ion (5) takes the hwm 

K2, Kzz_J/0' t {0 I (I,R) 

Equations (16). (17) and (18l form a system of linear 
algebraic equat ions which, in view of the compatibi l i ty 
equat ions (10) and ( l l k  can be solved for the unknown 

8 B 

INCIDENT [ ~'I 
R A Y L E I G H  

WAVE X 2 

l"i.q. 2. (ieometry Of u flexible .strip-ioundation su/?jected 
to a rectangular impulse Rayleig/1-waw" e\('itati(m 
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nodal displacements and rotation angles of the plate to 
give 

iu IF ]~uy ', 

',0' ', = [K:2 ] - '  [K2, ] ',u' ', (19) 

where 

[ Fx ] =([KI 1] --[Kl ,][K22]-' [K21] 
L L 

+ 2  [ T ] ' [ D G ' ] -  1[T]-  ' } [ T ] ' [ D G ' ]  ' 

(20) 

Once the nodal displacements are calculated, the contact 
tractions can be determined from equation (7). 

NUMERICAL EXAMPLE 

The combined time domain BEM-FEM technique is 
employed to determine the dynamic response of a flexible 
massless strip-foundation subjected either to transient 
external forces or to seismic waves. The surface 
foundation is in smooth contact with a homogeneous 
isotropic linear elastic half-space characterized by a 
modulus of elasticity E=2.58384× 1091b/fl 2, a mass 
density p = 10.368 lb/sec2/fi 4 and a Poisson's ratio r =  1.."3 
or 1."4. 

For a rigid surface massless strip-foundation, the 
response depends only on the elastic constants ofthe half- 

space medium and the frequency of the exciting dynamic 
disturbance 2. However. the dynamic behaviour of a 
flexible footing is additionally affected by the material 
properties of the elastic plate. The main parameter 
characterizing the flexibility of the soil-foundation system 
is thc relative stiffncss K, defined by 

K,= D v" D~ (21) 

where the flexural rigidities D r and D, ofthe plate and soil. 
respectively, are given by 

and 

Ept 3 
Dr = T-,'~ (22) 

2(1 +r , )  
D, = - --~,~3 T (23) 

with tp and B representing the thickness and the halfwidth 
of the foundation, respectively. Although the relative 
stiffness would be sufficient to characterize the elastic 
response of the system to a static load. it is not the only 
criterion to specify whether the system is stiff or flexible 
when a dynamic load is applied. The spatial distribution 
and the time variation of the dynamic disturbances are 
also decisive factors in determining the flexural behaviour 
of the foundation. 

The strip-foundation under consideration has a 5 ft 
width and a thickness tp that satisfies the requirement 
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ltpB]<~ I..10 for thin platc behaviour-'". In all cases, the 
stiffness matrix of the strip-footing has bccn formulated 
for a discretization of 8 line elements of equal length L. In 
order to increase the accuracy of the method, the kernel 
matrices expressing the influence of the soil on the 
tbundation responsc havc been evaluated on thc basis of a 
further discretization of  the 8 elements into 3 subelements 
per clement, 

The response of the system to externally' applied 
uniform pressure, point, and moment loadings is obtained 
first for a series of representative relative stiffnesses. The 
dynamic responses of the foundation excited in turn by a 
uniform impulse external loading of intensity' 14~o= 
20.0 k.:fi:, a point load at the centre of the plate strip of 
intensity P2o = 100 k.lt and a moment  applied as a force 
couple of two equal, opposite point forces of intensity 
P2o= 100k..ft located on the foundation mid-axis at 
distances B..4 from the centre line are plotted in Figs 3-8,. 
The duration ofall the impulse loads is At = 16 x 10 - ~ sec. 
and the relative stiffness k, =0.3. These impulse responses 
are sufficient to calculate the response of the soil- 
toundation system for any time variation of the external 
loadings. The vertical amplitudes of the response at the 
centre and one corner edge of the foundation subjectcd to 
a harmonic uniform vertical loading are plotted versus the 
dimensionless frequency a o = B c g c  2 in Figs 9 and 10. 
These figures have been drawn for several representative 
values of  the relative stiffness ranging from K,=0.003 to 

K , =  3.000. The smallest value of k, corresponds to an 
almost non-existing foundation for which the response i~, 
almost identical to the frec ficld motion. ',vhilc the largcsl 
value of K, corresponds to an almost "rtgid" plate. It > 
observed fi-om Figs 9 and 10 that thc displacements, 
decrease as the frequency' increases and thcv seem rather 
insensitive to changes in relative stiffness. Figure 11 
portrays the amplitude of the vertical displacement along 
the centre linc of the toundation fc, r a reprcscntati',c 
relative stiffness and circular frequencies, ~:~ of the 
uniformly applied loading. Similar figure,,, plotted h~r a 
series of relative stiffncsses can be found m reference 25. A, 
might be expected, the displacement at the cenlrc > 
greater than that at the corner edge. When the rclati',c 
stiffness increases the displacement at the centre 
decreases, while the displacement at the corner edge either 
decreases or increases depending on the frequent:.,, of the 
applied forcc. The variation of the harmonic response of 
strip-foundations for the considered range of frcquencic~, 
represents a remarkable similarity to thc one reported m 
referencc 21 for three-dimensional flexible surface 
foundations. 

The numerical computations wcrc performed on a 
Harris H 100 computer. A representative impulse vcrtical 
response plotted in Fig. 3 was obtained in tv ,  o steps. The 
first one, corresponding to the computation of the kernels 
for the soil. required 24.073 CP rains for 400 timc stcps. 
while the second one, which combines the calculated 
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kernels with the stiffness matrix of the plate, required 
82.00 CP secs. Only 3.85 CP secs were needed for one 
frequency and 1200 time steps for the harmonic vertical 
response. 

Next, the foundation is excited in turn by a series of 
harmonic point loads applied along the centre line and the 
resulting responses are plotted versus the dimensionless 
frequency in Figs 12 and 13. Depending on frequency, the 
displacement at the centre of a 'soft' plate (K = 0.003) can 
be four to six times greater than the displacement at the 
centre of a 'stiff" plate (K,=  3.000). The centre 
displacement decreases almost monotonically with 
increasing frequency, while for a specific value of 
frequency, the displacement both at the centre and the 
corner edge are primarily dependent on the relative 
stiffness. Similar behaviour has been reported in reference 
21 for the centre of three-dimensional flexible surface 
foundations. For a specific value of relative stiffness, 
however, the response at the corner edge of three- 
dimensional plates decreases at a much faster rate than 
that of strip-foundations with the same width and 
material properties. This difference is believed to be due to 
the smaller elastic resistance of flexible strip plates 
compared with that of three-dimensional finite plates. 
Figure 14 corresponds to the case of concentrated 
harmonic forces acting at the centre and provides 
information analogous to that in Fig. !I .  It is observed 
that the 'softer' the plate, the more rapidly the amplitude 

of the displacement decreases as the distance from the 
centre is increased. 

Figures 15 and 16 portray the vertical displacements 
under one ofthe loads ofthe couple force and at the corner 
edge versus frequency for the case of a harmonically 
varying force couple at the centre of the plate and of a 
moment arm of B/4. In contrast to the two previous cases, 
the displacement under the load does not vary 
monotonically with frequency as Fig. 15 clearly shows. It 
actually increases for low frequencies and decreases for 
higher frequencies. For high frequencies, the response at 
the corner edge is primarily dependent on the relative 
stiffness. A similar behaviour has been reported in 
reference 21 for both the centre and the corner edge 
displacements of three-dimensional flexible surface 
foundations. Figure 17 shows the displacement 
amplitudes along the width of the foundation for a 
representative relative stiffness and series of frequencies 
for the case of the force couple loading. More extensive 
studies on the displacement variation along the width of 
the foundation can be found in reference 25. 

In all the parametric studies presented in the above 
examplc, the foundations with small relative stiffness 
behaved like "soft" plates for low frequencies and like "stiff 
plates for high frequencies. This phenomenon can be 
explained physically, since on the one hand a harmonic 
load with a low frequency produces waves of a large 
wavelength and, therefore, deformation that can be easily 
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spanned by the plate and on the other hand the spanning 
of the small wavelengths caused by harmonic forces with a 
high frequency is difficult to achieve even by systems with 
small relative stiffnesses. 

Consider now the same foundation subjected to a 
Rayleigh wave propagating in the X~X 2 plane. It should 
bc pointed out that the solution procedure presented 
herein is general and the equations derived are valid 
independently of the nature of the seismic dusturbance 
and its variation. In this example, a Rayleigh wave was so 
chosen as to permit comparison with the results obtained 
in reference 2. The calculation of the vertical response 
requires evaluation ofthe [F ~ ] given by equations (19) as 
well as the specification ofthe free-field wave motion. The 
matrix [F ~] is independent of the time variation of the 
seismic waves and also of the time step N under 
consideration, it, therefore, needs to be calculated only 
once for the particular soil medium and space 
discretization. For a elastic soil medium with a Poisson's 
ratio r =  1/4, the vertical component  of the free-field 
surface motion U r 2 for a harmonic Rayleigh wave 
horizontally propagating in the X ~ X 2 plane is given by 3° 

amplitude of the flexible plate to a Rayleigh ~ a \ e  for a 
sequence of frequencies and relative stiffnesses. The 
~ariation of the response amplitude along the width of the 
foundation is plotted in Fig. 20 for a representative 
relative stiffness. A more detailed study on the response 
variation along the width of the foundation can be found 
in reference 25. In Figs 18-20. it is observed that ~lle 
displacement at the cenlre decreases with increasing 
frequency, while the displacement at the corner edge 
initially increases, but then starts to decrease at higher 
frequencies. Also, as expected, the response amplitude 
decreases with decreasing plate stiflhess. 

The computation of the [F x] matrix for 12 elements 
and 5 subelements per element required 32.78 ( 'P  secs in a 
Harris H 100 computer. For each frequency of Figs 18 and 
19 only 26.63 CP secs were required. Such a considerabl~ 
small amount of CP time was expected, since no 
superposition was employed for the solution ofthe seismic 
problem. 

C O N C L U S I O N S  

u/2 = R"s in [ ( ° (  t -  9190.1 ''~ 68 ) ]  (24) 

Figures 18 and 19 portray the harmonic vertical response 

The direct time domain BEM has been combined with the 
FEM for the determination of the response to transient 
torces or wave excitations of  a massless flexible strip- 
foundation supported at the surface of an elastic hall: 
space. 
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Parametric studies are conducted for various types of  
external loads, relative soil-foundation stiffnesses, and 
frequencies of  harmonic external disturbances. In all 
cases, the response at the centre of  the footing decreases 
for increasing frequency of the externally applied loads. 
For a specific relative stiffness, however, the response at 
the corner edge does not var v monotonically with the 
frequency of  the exciting dynamic disturbance. In 
addition to the relative stiffness and the frequency of  the 
applied forces, the spatial distribution of  the loadings is a 
decisive factor on the response amplitude of the 
foundation. In fact, for the case of  an external 
concentrated force or moment acting at the centre of  the 
footing, the response greatly depends on the relative 
stiffness, while the stiffness effect is insignificant for the case 
of  a uniform loading. On the other hand. for the case of  
seismic loading and at low frequencies, the response of 
both flexible and stiff two-dimensional plates complies 
closely with the free field motion, while for higher 
frequencies the response amplitude greatly depends on 
the relative stiffness. Even though the obtained results for 
at strip-foundation present may similarities with the 
dynamic behaviour of a massless flexible surface three- 
dimensional finite plate, several differences due to the lack 
of corners have been observed 
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