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A time domain Boundary Element-Finite method is employed to determine the dynamic response
of flexible surface two-dimensional foundations under conditions of plane strain placed on an
elastic soil medium and subjected either to transient external forces or to obliquely incident seismic
waves. The elastic, isotropic, and homogeneous soil medium is treated by the time domain Direct
Boundary Element Method, while the flexible foundation is treated by the Finite Element Method.
The two methods are appropriately combined through equilibrium and compatibility
considerations at the soil-foundation interface. Parametric studies examining the effect of the
relative stiffness between the foundation and the soil and the spatial distribution of the dynamic
disturbances on the foundation response are presented.

INTRODUCTION

The dynamic analysis of foundations placed on an elastic
soil medium has received considerable attention in recent
years. In the great majority of cases, the assumption is
made that the foundation is rigid. An almost complete
review of the research pertinent to the dynamic analysis of
rigid three-dimensional (3-D) and two-dimensional (2-D)
foundations on an elastic soil can be found in Karabalis
and Beskos' and Spyrakos and Beskos?, respectively.
However, the rigid foundation assumption which appears
to be reasonable for massive structures such as nuclear
power plants may be inappropriate for many other
structures such as buildings with large plane dimensions
on a mat foundation, buildings with a stiff central core
combined with flexible frames on a mat foundation.
concrete gravity dams, and earth dams**. Goschy®-°, in
his work on soil-structure interaction of tall large-panel
buildings, mentions that field observations have proven
that foundations of such buildings can be considered
infinitely stiff in the shorter and flexible in the longer
direction. On the basis of full-scale measurements on a
particular structure, Wong, Luco and Trifunac’ found
that the rigid mat assumption leads to acceptable results
describing the overall motion of the superstructure, but
does not represent properly deformations close to the
foundation level. This paper deals with the determination
of the dynamic response of flexible 2-D surface
foundations.

While the effect of mat flexibility has been extensively
treated under static conditions®, such a treatment for the
dynamic case appears to be rather poor. Oien® obtained
the response of a flexible strip-footing subjected to surface
waves by expanding the plate motion in terms of natural
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modes and then forcing the model response into
compliance with the wave excitation through satisfaction
ofcompatibility and equilibrium on the surface of the half-
plane. Oien’s work was extended by Iguchi'®'! to
determine the response of a rectangular plate in smooth
contact with a linear half-space. Lin'? determined
analytically the harmonic vertical and rocking motion of
a surface flexible disc placed on a viscoelastic half-space.
while Krenk and Schmidt'*-'* considered also
analytically symmetric and asymmetric vibrations of an
elastic circular plate resting on an elastic half-space.
Treatment of soil-structure interaction problems by the
Finite Element Method (FEM) presents certain
disadvantages caused by the fact that a semi-infinite
medium is represented by a finite size model'®. A very
successful approach for the treatment of two-dimensional
linear soil-structure interaction problems by the FEM.,
which is free of the disadvantages concerning the soil
model, is the substructuring method of Chopra and his co-
workers®*1®. The effect of the flexibility of surface 2-D
foundations has also been discussed by Aydinoglou and
Cakiroglou'” on the basis of Chopra’s work'®.

Lately, a relatively new technique. the Boundary
Element Method (BEM), has been successfully
implemented for the analysis of dynamic soil-structure
interaction problems involving 2-D and 3-D rigid
foundations on elastic half-space'®'?. This method is
ideally suited for engineering problems involving finite
domains because it reduces the spatial dimensions of the
problem by one and takes into account the radiation
conditions at infinity2°. Whittaker and Christiano®'**
and Iguchi and Luco?? combined the BEM with the well-
established Finite Element Method to study the problem
ofthe dynamic behaviour of an elastic flexible rectangular
plate placed on an elastic half-space and subjected to
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either harmonic external forces or oblique seismic waves.
In all cases, with the exception of references 1, 2 and 24, a
frequency domain BEM formulation has been employed
to evaluate the response of foundations to dynamic
disturbances. A frequency domain formulation, however,
does not permit an extension to the case of nonlinear soil
behaviour.

In this paper, the dynamic response of a massless
flexible two-dimensional surface foundation placed on a
homogeneous linear elastic half-space representing the
soil medium and subjected either to external dynamic
forces or obliquely incident seismic waves of a general
time variation. is numerically obtained. The solution of
the present boundary value problems is based on a hybrid
Boundary  Element-Finite Element formulation.
Following the methodology presented in detail in
references 2 and 25. the foundation and the soil
foundation interface are discretized into a number of line
clements, while the time variation of the externally applied
forces is approximated by a sequence of rectangular
impulses of equal duration. Then, on the assumption of
constant variation of displacements and tractions over
each element and time step, the FEM is used to determine
the stiffness matrix of the flexible footing and the BEM is
employed to determine the dynamic stiffness matrix of the
soil medium. The response of the foundation to an
impulse disturbance is obtained through an appropriate
coupling of the compatibility and equilibrium
requirements at the soil-foundation interface. Finally. the
foundation response to the externally applied forces is
determined by superimposing all the individual impulse
responses. Solutions are presented for a flexible strip-
footing subjected either to a point, uniform pressure and
moment loadings or to seismic waves. For each type of
dynamic loading. parametric studies are conducted to
cxamine the effect ofthe relative stiffness between the plate
and the foundation on the response of the plate.

The main advantage of the proposed time domain
BEM-FEM formulation is that, unlike frequency domain
techniques, it provides directly the transient response and
forms the basis for extension to the case of nonlincar soil
behaviour!-2:2%,

FORMULATION AND SOLUTION

Consider the flexible surface massless strip-footing of Fig.
I in frictionless contact with a homogeneous isotropic
linear elastic soil medium and subjected to a rectangular
impulse force at time step m. Denoting the vertical
displacement of the foundation by v{x,,t), the normal
contact stress distribution at the soil-foundation interface
by 7,,(x;. ) and the magnitude of the vertical rectangular
impulse force by p(x,. 1). the governing equation of a plate
strip-foundation can be expressed as?®

&reixgLn
(;\.'7—=P(x1‘t)—rn(xl.t) (1)

where D=E,t; /12(1 —v?) represents the flexural rigidity
of the foundation plate with E, denoting the Young's
modulus, 1, the thickness. and t, the Poisson’s ratio of the
plate, respectively. Under the assumption of zero initial
conditions and body forces, the vertical displacement
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Fig. 1. Geometry of a flexible strip-foundation subjected
to a rectangular impulse force

v(x,.r)at the soil-foundation interface satisfies the integral
equation’

»~

L(E )= J Ua5[ 2 1 X1 0(x, 1)] dS(x) 2)

s

where S denotes the soil-foundation contact area and the
component v,, of the Stoke's tensor for the infinite elastic

space is explicitly given by3’
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where p represents the density of the soil medium. H is the
Heaviside function, and ¢, and c, are the dilatational and
shear wave velocities, respectively.

By discretizing the strip-foundation and the soil
foundation interface into a Q number ofelements of equal
length L. the time ¢ into n intervals of equal duration At
and assuming a constant distribution of displacements
and tractions over each element and time interval.
equations {1) and (2) can be reduced to a set of linear
algebraic equations. Thus, through standard finite
element procedures?®, at a time step N for an impulse
force acting at time m At, equation (1) can be expressed in

the form
Ky, Ky |fu® Py R}
N e (5)
K, K, ]Jlo M; 0

where K;;(i=1,2and j= 1, 2) are the stiffness elements of
the total stiflness matrix for the elastic strip-foundation
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obtained by appropriate superposition of the element
stiffness matrix, ‘u® ! and !0 ' represent the nodal vertical
displacement and rotation vectors. respectively, | P! and
‘M; ! are the nodal external forces acting on the
foundation and {R3! is the vector of the nodal forces
associated with the contact stresses. Furthermore, the
integral equation (2) can be expressed 1n the discretized
form

L =[DGY]IC ]+ PG (6)
] A

where 18 and ;t* are the vertical displacement and
traction vectors. respectively. at the centres of the
elements at the soil-foundation interface at time N Ar due
to an impulse force at time m At while the terms of the
diagonal matrix [DG™] and the vector 'PG‘! are
explicitly given in references 2 and 25. Equation (6) solved
for the traction vector yields

( N [DGm]—l(l :‘:PG\:) ‘7)

(.‘onsequenlly. the vector of the resultant forces
corresponding to the contact stresses over the soil-
foundation interface can be obtained from

S =L[DG"] 'diat! - PG ) (8)

In order to achieve compatibility between the
deflection of the foundation and the motion ofthe ground
at the interface. the average displacement over an element
¢ 1s approximated by the mean value of the nodal
displacements at the ends of the element ¢2*-**

v, =3y, ) g=1.2....0 (9)
or in matrix form for the whole foundauon. by
=[T]lu"} {1

where the matrix [T] is of order Q x (Q + 1). Similarly. the
vectors of the resultant forces (R; | associated wilh the
contact tractions 't'! and the nodal forces |R3 ! arc
related through

21 =[T) IRy, (1
where the superscript T denotes matrix transposition.

Equations (5) through (11) form a system of linear

algebraic equations, which can be solved for the unknown

vertical displacements (u*] and rotations |8 ) to give

' L ;
=K1+ (6T T

—[Klz][k’ul-‘[xz,])

(1P} + L[T)'[DG™}"'{PG"|

—[K:J[K;) NIMT) (12)
0" =[K,,) (M3 Ky, Jtut ) (13)
It should be noted that the matrix product

(L:2)[T)'[G™) '[T] physically represents the resistance
developed by the soil at the soil-foundation interface.
Once the vector {u"} of the nodal displacements is
calculated, the vector {@"} of the contact displacements
can be obtained from equation (10). Then. the tractions at
the soil-foundation interface can be calculated from
cquation (7).

The response of the flexible strip-foundation subjected
10 a sequence of M rectangular impulses approximating
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an external load of a transient time variation can be
determined by employing the principle of superposition
on the individual impulse responses given by equations
{12} and (13). as described in reference 2.

Consider now the same strip-foundation placed on a
frictionless elastic half-space and subjected to a train of
oblique seismic waves. as shown in Fig. 2. By adopting the
procedure suggested by Thau®". the total vertical
displacement field {ugdx,. )} at the contact ared can be
decomposed into two parts. 1.e.

(XL = a4 L) 114

where  Jugdxp. 1)) and  jugx,on; are the  vertical
displacement vectors of the free and the scattered fields.
respectively.

If the time variations of both the free and the scattered
continuous ficlds are approximated by sequences of M
rectangular impulses, then for a time step N equation (14)
can be expressed into the following discretized form

u :ﬁ}: + ') for N=m

and (15
wmt=ta =10 for N>m

where {u*}. {0;} and |4, | represent the total. free. and

scattered vectors of the vertical displacement fields at the
centres of the elements at a time step .V, respectively. In
essence, equation (14) expresses the fact that the response
of the massless foundation at a time step N 1s affected only
by the impulse seismic disturbance applied at that
particular time step. Since the vector |PG"! cxpressing
the effect of all the previous time steps in equation (6) is
zero. the scattered field displacements (u’! can be
obtained at a time step N by

Dal=[DG* ]t {16)

and the vector of the resultant forces at the contact area is
related to the contact stresses through

;R;:=—-—[DG] TN 1

Furthermore. the force displacement
corresponding to equation {5) takes the form

B . \
Ky, l\’xz %“\ %R l (18)
K,, K, J0 0 f

Equations (16). (17) and (18) form a system of lincar

algebraic equations which, in view of the compatibility
equations (10) and (11), can be solved for the unknown
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Fig.2. Geometry of a flexible strip-foundation subjected

to a rectangular impulse Rayleigh-ware excitation
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nodal displacements and rotation angles of the plate to
give

[ foMt

') =[F*}{a; !
10 =[K;,) 7 '[Ky 1wt (19)
where
[F*1=([K, 1=K, ][K;217'[K3)]

: L
3 [TVIDG ) [T]7 (77 [DG*] !

(20)

Once the nodal displacements are calculated, the contact
tractions can be determined from cquation (7).

NUMERICAL EXAMPLE

The combined time domain BEM-FEM technique is
employed to determine the dynamic response of a flexible
massless strip-foundation subjected either to transient
external forces or to seismic waves. The surface
foundation is in smooth contact with a homogeneous
isotropic linear elastic half-space characterized by a
modulus of elasticity E=2.58384 x 10° Ib/ft?>, a mass
density p=10.368 Ib/sec?/ft* and a Poisson’s ratio v = 1.3
or 1/4.

For a ngid surface massless strip-foundation, the
response depends only on the elastic constants of the half-
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3O (f1x107)
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22t

0.61 |

02 |

space medium and the frequency of the exciting dynamic
disturbance®. However. the dynamic behaviour of a
flexible footing is additionally affected by the material
properties of the elastic plate. The main parameter
characterizing the flexibility of the soil-foundation system
ts the relative stiffness K, defined by

K,=D, D, (21

where the flexural rigidities D, and D, ofthe plate and soil.
respectively. are given by

3
p,= Lo (22)
r | — l.,Z,
and
21 +¢,)
D= 23
<= ERS (23)

with 1, and Brepresenting the thickness and the half width
of the foundation, respectively. Although the relative
stiffness would be sufficient to characterize the clastic
response of the system to a static load. it is not the only
criterion to specify whether the system is stiff or flexible
when a dynamic load is applied. The spatial distribution
and the time variation of the dynamic disturbances arc
also decisive factors in determining the flexural behaviour
of the foundation.

The strip-foundation under consideration has a 5 ft
width and a thickness f, that satisfies the requirement

W(t) (K/$1%)
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t
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26

{t,-B)< 1:10 for thin plate behaviour®®. In all cases. the
stiffness matrix of the strip-footing has been formulated
for a discretization of § line elements of equal length L. In
order to increase the accuracy of the method, the kernel
matrices expressing the influence of the soil on the
foundation responsec have been evaluated on the basis ofa
further discretization of the & clements into 3 subelements
per clement.

The response of the system to externally applied
untform pressure. point. and moment loadings is obtained
first for a series of representative relative stiffnesses. The
dynamic responses of the foundation excited in turn by a
uniform 1mpulse external loading of intensity W,,=
20.0k-ft, a point load at the centre of the plate strip of
intensity P,o= 100k ft and a moment applied as a force
couple of two equal, opposite point forces of intensity
P,,=100k/ft located on the foundation mid-axis at
distances B:4 from the centre line arc plotted in Figs 3-8.
The duration ofall the impulse loads 1s At = 16 x 10 ~° sec,
and the relative stiffness k, =0.3. These impulse responses
are sufficient to calculate the response of the soil-
foundation system for any time variation of the external
loadings. The vertical amplitudes of the response at the
centre and one corner edge of the foundation subjected to
a harmonic uniform vertical loading are plotted versus the
dimensionless frequency a,=Bw.c¢, in Figs 9 and 10.
These figures have been drawn for several representative
values of the relative stiffness ranging from K, =0.003 to

D2 (1% 10 9)

15
08

0.6 0
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0.2

I
\
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K, =3.000. The smallest value of A, corresponds to an
almost non-existing foundation for which the response is
almost identical to the free field motion. while the largest
value of K, corresponds to an almost “rigid” plate. 1t s
observed from Figs 9 and 10 that the displacements
decrease as the frequency increases and they seem rather
msensitive 1o changes in relative stiffness. Figure 11
portrays the amplitude of the vertical displacement along
the centre hne of the foundation for a representative
relative stiffness and circular  frequencies 0 of the
uniformly applied loading. Similar figures plotted for a
series of relative stiffnesses can be found in reference 250 As
might be expected. the displacement at the centre s
greater than that at the corner edge. When the relative
stifiness increases the displacement at the centre
decreases. while the displacement at the corner edge either
decreases or increases depending on the frequency of the
applied force. The variation of the harmonic response of
strip-foundations for the considered range of frequencies
represents a remarkable similarity to the one reported in
reference 21 for three-dimensional flexible surface
foundations.

The numerical computations were performed on a
Harris H100 computer. A representative impulse vertical
response plotted in Fig. 3 was obtained in two steps. The
first one, corresponding to the computation of the kernels
for the soll. required 24.073 CP mins for 400 time steps.
while the second one, which combines the calculated

W(t) (K/f12)
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3
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Fig. 4.
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kernels with the stiffness matrix of the plate. required
82.00 CP secs. Only 3.85 CP secs were needed for one
frequency and 1200 time steps for the harmonic vertical
response.

Next, the foundation is excited in turn by a series of
harmonic point loads applied along the centre line and the
resulting responses are plotted versus the dimensionless
frequency in Figs 12 and 13. Depending on frequency. the
displacement at the centre of a ‘soft’ plate (K =0.003) can
be four to six times greater than the displacement at the
centre of a ‘suff plate (K,=3.000). The centre
displacement decreases almost monotonically with
increasing frequency, while for a specific value of
frequency. the displacement both at the centre and the
corner edge are primarily dependent on the relative
stiffness. Similar behaviour has been reported in reference
21 for the centre of three-dimensional fiexible surface
foundations. For a specific value of relative stiffness.
however, the response at the corner edge of three-
dimensional plates decreases at a much faster rate than
that of strip-foundations with the same width and
material properties. This difference is believed to be due to
the smaller elastic resistance of flexible strip plates
compared with that of three-dimensional finite plates.
Figure 14 corresponds to the case of concentrated
harmonic forces acting at the centre and provides
information analogous to that in Fig. 1t. It is observed
that the ‘softer’ the plate, the more rapidly the amplitude

A82(ft x 10 %)

of the displacement decreases as the distance from the
centre 1$ increased.

Figures 15 and 16 portray the vertical displacements
under one of the loads of the couple force and at the corner
edge versus frequency for the case of a harmonically
varying force couple at the centre of the plate and of a
moment arm of B/4.In contrast to the two previous cases,
the displacement under the load does not vary
monotonically with frequency as Fig. 15 clearly shows. It
actually increases for low frequencies and decreases for
higher frequencies. For high frequencies. the response at
the corner edge is primarily dependent on the relative
stiffness. A similar behaviour has been reported in
reference 21 for both the centre and the corner edge
displacements of three-dimensional flexible surface
foundations. Figure 17 shows the displacement
amplitudes along the width of the foundation for a
representative relative stiffness and series of frequencies
for the case of the force couple loading. More extensive
studies on the displacement variation along the width of
the foundation can be found in reference 25.

In all the parametric studies presented in the above
example. the foundations with small relative stiffness
behaved like ‘soft” plates for low frequencies and like *stifl"
plates for high frequencies. This phenomenon can be
explained physically, since on the one hand a harmonic
load with a low frequency produces waves of a large
wavelength and, therefore, deformation that can be easily

|
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4 0% | 1000
3.0t I
| 01 2 3 ! -4
I (secx 0.16144 x 10 )
-10
» ol l ?2“1“0 )
Lot | .01 —_—
00 , X | o5 ot
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Fig. 5. Vertical point force impulse response at the centre
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spanned by the platc and on the other hand the spanning
ofthe small wavelengths caused by harmonic forces with a
high frequency is difficult to achieve even by systems with
small relative stiffnesses.

Consider now the same foundation subjected to a
Rayleigh wave propagating in the X', X, plane. It should
be pointed out that the solution procedure presented
herein is general and the equations derived are valid
independently of the nature of the seismic dusturbance
and its variation. In this example, a Rayleigh wave was so
chosen as to permit comparison with the results obtained
in reference 2. The calculation of the vertical response
requires evaluation of the [F* ] given by equations (19) as
well as the specification of the free-ficld wave motion. The
matrix [F*] is independent of the time variation of the
seismic waves and also of the time step N under
consideration, it, therefore. needs to be calculated only
once for the particular soill medium and space
discretization. For a elastic soil medium with a Poisson’s
ratio v=1/4, the vertical component of the free-ficld
surface motion u,, for a harmonic Rayleigh wave
horizontally propagating in the X, X , plane is given by*°

. Xy .
uf2=Rr Slnlr(l)(\l—a9—.16'8 )] ‘24)

Figures 18 and 19 portray the harmonic vertical response

Do (11 x 10°)

amplitude of the flexible plate to a Rayvleigh wave for a

variation of the response amplitude along the width of the
foundation is plotted in Fig. 20 for a representative
relative stiffness. A more detailed study on the response
variation along the width of the foundation can be found
in reference 25. In Figs 18-20. it is observed that the
displacement at the centre decreases with increasing
frequency, while the displacement at the corner edge
initially increases. but then starts to decrease at higher
frequencies. Also. as expected. the response amplitude
decreases with decreasing plate stiffness.

The computation of the [F*] matrix for 12 elements
and 5 subelements per element required 32.78 CP secs ina
Harris H100 computer. For each frequency of Figs 18 and
19 only 26.63 CP secs were required. Such a considerably
small amount of CP time was expected. since no
superposition was employed for the solution of the seismic
problem.

CONCLUSIONS

The direct time domain BEM has been combined with the
FEM for the determination of the response to transient
forces or wave excitations of a massless flexible strip-
foundation supported at the surface of an clastic half-
space.
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Parametric studies are conducted for various types of
external loads. relative soil-foundation stiffnesses. and
frequencies of harmonic external disturbances. In all
cases, the response at the centre of the footing decreases
for increasing frequency of the externally applied loads.
For a specific relative stiffness. however, the response at
the corner edge does not vary monotonically with the
frequency of the exciting dynamic disturbance. In
addition to the relative stifiness and the frequency of the
applied forces. the spatial distribution of the loadings is a
decisive factor on the response amphlitude of the
foundation. In fact, for the case of an external
concentrated force or moment acting at the centre of the
footing. the response greatly depends on the relative
stiffness. while the stiffness effect is insignificant for the case
of a4 uniform loading. On the other hand. for the case of
seismic loading and at low frequencies, the response of
both flexible and stiff two-dimensional plates complies
closely with the free field motion, while for higher
frequencies the response amplitude greatly depends on
the relative stiffness. Even though the obtained results for
a strip-foundation present may similarities with the
dynamic behaviour of a massless flexible surface three-
dimensional finite plate, several differences due to the lack
of corners have been observed.
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