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SUMMARY 
The dynamic response of rigid strip-foundations placed on or embedded in a homogeneous, isotropic, h e a r  
elastic half-space under conditions of plane strain to either external forces or obliquely incident seismic waves 
of arbitrary time variation is numerically obtained. The above mixed boundary-value problems are treated by 
the time domain boundary element method which is used in a step-by-step timewise fashion to provide the 
foundation response to a rectangular impulse. Numerical examples are presented in detail to demonstrate the 
use and importance of the proposed method. The method appears to be more advantageous than frequency 
domain techniques, because it provides the transient foundation response in a natural and direct way and can 
form the basis for extension to the non-linear case. 

INTRODUCTION 

In recent years, the need for the design of dynamically loaded structures such as machine 
foundations under external forces or various building foundations under seismic waves has 
spurred extensive research in the area of soil-structure interaction. A detailed review of research 
related to the dynamic response of rigid footings done until 1967 can be found in the book of 
Richard, Hall and Woods.' A recent state-of-the-art paper by Gazetas2 covers the research 
activities in the area of foundation dynamics up to the year 1982, and a comprehensive review of the 
research pertinent to the dynamic analysis of three-dimensional foundations has been presented by 
Karabalis and Be~kos .~  

In this paper, the response of a two-dimensional rigid surface or embedded foundation to either 
external forces or oblique seismic waves is determined through a time domain BEM. The following 
discussion is restricted to two-dimensional rigid surface or  embedded foundations placed on a 
linear elastic half-space. The feasibility of modelling a three-dimensional soil-structure system by a 
plane strain model, and the errors involved in such a representation have been explored by Luco 
and HadJian4 and Hadjian, Luco and Wong.' 

The first successful analytical/numerical treatments of the dynamic behaviour of two- 
dimensional rigid surface foundations subjected to harmonic external forces can be found in 
References 6 and 7. Flitman* and Oien' considered the case of a rigid strip-foundation excited by 
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harmonic Rayleigh seismic waves. Simpson," following Oien's procedure, determined the 
response of a flexible one degree-of-freedom structure supported by a rigid foundation to Rayleigh 
wave excitation. The harmonic responses of rigid embedded foundations in an elastic half-space 
have also been studied analytically/nume~cally by Luco,' Trifunac,' Wong and Trifunac,' 
Luco, Wong and Trifunac14 and Abdel-Ghaffar and Trifunac' who obtained the antiplane 
harmonic response of semicircular and semielliptical foundations to external forces and oblique 
SH waves. Thau,16 Thau and Umek,'7.'8 UmekIg and Dravinski and Thau2Op2' also 
analytically/numerically examined both the antiplane and the general plane strain case of 
rectangular foundations subjected to either external forces or oblique seismic waves. Recently 
Meade and Keer22 considered again the harmonic dynamic behaviour of a rigid line inclusion and 
a rectangular foundation subjected to antiplane harmonic shear waves. 

The finite element method (FEM) in its c ~ n v e n t i o n a l ~ ~ - ~ ~  and specialized forms26.27 has also 
been used for the determination of the dynamic response of two-dimensional surface or embedded 
structures. Furthermore, simplified methods of analysis employing equivalent springs and 
dashpots to model the soil stiffness have been developed to approximately treat surface or 
embedded  foundation^.^*-^ ' 

A more accurate and efficient numerical technique than the FEM for treating linear dynamic 
soil-structure interaction problems is the boundary element method (BEM).32 Employing the 
BEM D ~ r n i n g u e z ~ ~ . ~ ~  and Dominguez and A l a r c ~ n ~ ' ~ ~ ~  have considered the time harmonic 
behaviour of two- and three-dimensional rigid surface or embedded foundations to external forces 
and travelling waves. 

With the exception of the approximate method of springs and dash pot^,^^-^' all the aforemen- 
tioned methods used for studying the dynamics of rigid or flexible  foundation^^-^^*^^-^^ are 
frequency dependent methods providing only the harmonic foundation response. Use of the BEM 
permits one to study soil-structure interaction problems involving half-space modelling in the 
frequency as well as in the time domain. The time domain approach is more advantageous than 
frequency domain approaches since it provides directly the response in a natural way and forms the 
basis for extension to non-linear  problem^.^*^^*^* 

A general time domain BEM has been developed for the dynamic analysis of soil-structure 
interaction problems and successfully applied by Spyrakos, Karabalis and B e ~ k o s , ~ ~  Karabalis 
and Beskos3 and Karabalis, Spyrakos and B e ~ k o s ~ ~  to various surface three- and two-dimensional 
foundation problems. References 37 and 38 in connection with the two-dimensional case have been 
restricted to a brief treatment of surface foundations only. In the present paper, the general two- 
dimensional time domain boundary element methodology is developed and applied to surface as 
well as embedded dynamic strip-foundation problems. In addition, the present formulation 
develops the surface foundation analysis as a special case of the embedded foundation one, and 
Rayleigh waves are considered here instead of the P-waves considered in Reference 37 for 
comparison purposes with other known results. The present time domain BEM determines the 
response by superimposing the various impulse responses corresponding to the sequence of 
impulses representing the dynamic disturbance. This constitutes the primary difference from the 
time domain BEM formulations proposed by Cole, Kosloff and Minster,39 Niwa et aL40 and 
Mano1is:l and allows one easily to circumvent difficulties encountered in the numerical treatment 
of the two-dimensional fundamental solutions.42 In addition, instability and inaccuracy related to 
the accumulation of the error for late times4' have not been encountered in the present 
formulation. An extension of the present approach to a direct step-by-step response determination 
in the time domain is straightforward and, in fact, has been presented by Karabalis and Be~kos .~  
The response superposition approach was exclusively used here because of its accuracy and 
computational 
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INTEGRAL REPRESENTATION OF PLANE ELASTODYNAMICS 

Under the assumptions of small displacement theory and homogeneous, isotropic, linear elastic 
material behaviour, the elastodynamic displacement field ui(x, t)  of a body D with a surface S under 
conditions of plane strain is governed by Navier’s equation 

pui,jj + (a + p)uj,ii + pfj = tij, i,j = 1,2 (1) 
where fj(x, t )  are the components of the body force per unit mass, I and p are the Lamb constants 
and p is the density of the medium. 

The fundamental solution of Navier’s equation, the response of an infinite medium to a unit 
impulse body force uniformly distributed along the line perpendicular to the plane D at point 5 and 
acting at time z, is given by43 

ri = xi - t i ,  r2 = (xi - t i ) ( x i  - ti), q2 = r2 + xi; i = 1,2 (3) 
where x3  is the axis perpendicular to the plane of the body D, and H represents the Heaviside 
function. 

In a well-posed boundary value problem, the equations of motion (1) can be reduced to an 
integral equation This is accomplished through the elastodynamic reciprocal theorem 
relating the elastodynamic state to be determined with the fundamental elastodynamic state 
expressed by equation (2). Using the dynamic reciprocal theorem and under the assumption of zero 
body forces and initial conditions, one can derive the following integral id en tit^:^^,^^ 

&(5)Uj(5 7 t )  = {UijCX, t; 5 I t(,i(x, t)I - c(n)ij[x, t; 5 I ui(x, t)I } dS(x) (4) 
1 s  

where the stress tensor c(,)ij is related to the fundamental solution uij  through the constitutive 
relations defined by Eringen and S u h ~ b i . ~ ~  For a boundary smooth at { ( ~ E S )  ~ ( 5 )  = 6,/2; for the 
interior (5 ED) ~ ( 5 )  = d,,, and for the exterior (5$D) ~ ( 5 )  = 0. 

Although the above integral representation provides a very elegant expression of the solution to 
any transient elastodynamic problem, an analytical solution of such a boundary value problem is 
impossible for the general case. Thus, resort is usually made to numerical methods of solution. This 
numerical treatment of equation (4) is presented in the next section. 

NUMERICAL TREATMENT OF INTEGRAL EQUATIONS 

In soil-structure interaction problems, where the primary purpose is the determination of the 
contact stresses at the soil-structure interface, one has to combine through equilibrium and 
compatibility the behaviour of the two components, soil and structure, expressed by their pertinent 
governing equation. The behaviour of the half-plane soil medium can be expressed by an integral 
equation of the form of equation (4). 

A numerical treatment of the boundary integral equation (4) with ~ ( 5 )  = 1/2 involving both time 
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and spatial discretization is presented in this section. The time discretization assumes an 
approximation of the externally applied surface tractions as a sequence of N rectangular impulses 
of equal duration At, as shown in Figure l(a). The spatial discretization requires division of the 
boundary S of the half-plane soil medium into Q line elements of length DS,. Figure l(b) shows 
such a spatial discretization for the case of a surface strip-foundation. 

The essential steps in the solution process are (a) evaluation of the boundary response uj due to a 
single rectangular impulse traction tcor, (b) superposition of the individual impulse responses to 
obtain the total response. 

On account of the causality property43 of the fundamental solution uij(x, t; 4 I tcai) only the first 
time step (n = 1) numerical treatment of this solution is required. Thus, using the spatial and time 
discretizations, equation (2) leads to 

Figure l(a). Discretization of the contact traction tcnti to a sequence of rectangular impulses 

’ lX2 
Figure l(b). Geometry and discretization of a surface strip-foundation 
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where 

with c1 and c2 being the dilatational (P) and shear ( S )  wave velocities, respectively, tl(n) is the 
intensity of the traction vector and q is shown in Figure l(b) and given by equation (3). The 
indicated spatial integrations and differentiations are performed analytically, leading to the 
discretized form G;!. Similar treatment of the tensor yields the discretized kernel function F". 
Both GY' and F;j are given explicitly in Reference 42. 

On account of the discretized kernel function forms GY! and f';! and on the assumption of 
constant variation of displacements and tractions over each line element and time step n, equation 
(4), written for every boundary element p ,  yields the following system of linear algebraic equations: 

where n =  1,2 ,..., N ,  1 = N + n -  1, and q = S,2 ,..., Q. 
The jASGnq ds and jasFnq ds physically represent the displacements and tractions respectively, at 

the centre of an element p at the time step n, which are induced by a unit rectangular impulse of the 
constant traction vector acting over the element q during the first time step. 

Finally, the total system response to a sequence of impulses starting at time milt, i.e. to the time 
history of the applied traction ( N  - rn)At, as shown in Figure 2, can be evaluated from 

where i = n - m + 1. 
The integrals of equation (8) present logarithmic singularities which appear only 

when the 'source element' p and the 'receiver element' q coincide. The treatment of the 

Figure 2. Geometry of an embedded rigid strip-foundation to external forces 
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logarithmic singularities is presented in detail in Reference 42. Except for these singularities, the 
integrations indicated in equations (7) and (8) present no difficulties, and are performed 
numerically using a Gaussian quadrature algorithm. 

EXTERNALLY APPLIED DYNAMIC LOADS 

Consider an embedded rigid massless foundation with a rectangular cross-section and with infinite 
length along the x3 axis, as shown in Figure 2. The foundation is placed on a homogeneous, 
isotropic, linear elastic soil and subjected to a rectangular impulse force at time step m. Since the 
fundamental solution of the infinite plane is employed, the boundary to be discretized will be both 
the contact area and the free surface. However, a relatively small area outside the soil-foundation 
interface needs to be discretized, because the influence of the free field elements on the foundation 
response is decreasing with di~tance.~' For a discretization of the soil-foundation interface and 
part of the adjacent free field into a number, Q, of elements, as shown in Figure 3(a), equation (8) 
can be expressed in the following matrix form: 

t{uN} = [Is Gmds] ( t N }  + (PGN} - {PFN} (9) 

where (u"} and { tN}  are the displacement and traction vectors at time NAt due to an impulse force 
at time mAt, respectively. The components of the vectors (PG"] and {PFN} are given by 

{PGN} =aN,,, n = m + l  2 [ I~Gzds]{rN-ltl) 

and 

{PF"} =a,, n = m + l  'f [ ~sf'ds]{uN-li'} 

respectively, where 6,, is the Kronecker's delta {PG") - (PFN} can be interpreted as the influence 
of all the previous time steps (n  < N )  on the foundation response. 

The compatibility of displacements at the soil-foundation interface is given by 

(a = CSl P"} (1 1) 

where { u r }  is the vector of the displacements at the centre of the rigid foundation elements along 
the x1 and x2 axes, and {D"} is the vector of the vertical (AT), horizontal (A:) and rotational (4:) 
response amplitudes. The entries of the matrix [ S ]  are functions of the geometric quantities42 R ,  
and 111 shown in Figure 3(a). 

At a time step m the externally applied impulse force {P") can be el-pressed in terms of the 

I 

x2 
i 

Figure 3(a). Spatial discretization of an embedded rigid strip-foundation 
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contact stresses as 

where the entries of the matrix [ K ]  are functions of the geometric quantities of the f o ~ n d a t i o n . ~ ~  
Equations (9), (1 1) and (12) form a system of linear algebraic equations which can be solved for 

the unknown contact displacements and tractions developed at the contact area of an embedded 
foundation in complete bond with the elastic half-space. However, there is an insignificant effect on 
solution accuracy for most practical purposes3' and the computation effort is greatly reduced, if 
'rigid-smooth' or 'rigid-pressureless' conditions" (i.e. relaxed boundary conditions) are adopted at 
the soil-foundation interface. In Reference 42, solutions of the above system of linear algebraic 
equations are given explicitly in matrix form. 

The surface rigid foundation can be considered as the limiting case of the associated embedded 
foundation with an embedment approaching the zero value. For the case of rigid surface strip- 
foundations, however, the effect on the response of the elements outside the interface is very small, 
and a solution of acceptable accuracy can be obtained without any free field  element^.^^'^' In fact, 
the response and tractions at the contact area of the surface foundation in complete bond with the 
elastic half-space can be determined from equations (9), (1 1) and (12), which for H = 0 can be solved 
to give 

( D N }  = ([K,[ s S G"d~1-l  [S])-l( { P }  + [ K ] [  j S G"ds1-l (PGN}) (13) 

and 

In order to determine the response of a rigid embedded or surface footing to a sequence of 
rectangular impulses approximating an external transient load, as shown in Figure l(a), the 
individual impulse responses given by either equation (13) or its counterpart for the embedded 
foundation42 are superimposed as described by equation (8). 

OBLIQUELY INCIDENT SEISMIC WAVES 

Consider an embedded rigid massless strip-foundation in a homogeneous linear elastic medium 
representing the soil and subjected to plane seismic waves impinging on its bottom side at an angle 
8, as shown in Figure 3(b). On the free surface, the total displacement field can be expressed as46947 

(Uf(xl,x,,t)} = [Ufl(Xl,X2,t) Uf2(X1,X2,t)lT (1 5)  

where ufl  and uf2 are the displacement components about the axes x1 and x2, respectively. The 
presence of a rigid footing embedded in the elastic medium causes scattering of the waves 
impinging on the foundation. The total response of the foundation, resulting from superposition of 
the free and scattered fields, can be written in the form48 

{U(Xl,t)) = (Uf(X1J)) + (us(x1J)I (16) 

Approximating the time variation of the continuous free and scattered fields by a sequence of 
rectangular impulses and discretizing the contact area into Q ,  equal elements, the response of a 
massless strip-footing at a time step N due to a rectangular impulse free-field displacement acting 
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M A t  ( M + l )  At 

Figure 3(b). Geometry of an embedded rigid stripfoundation to seismic waves 

at a time step m can be decomposed as 

{u”} = { u r }  + {u f } ,  for N = m 

and 

(u”} = (us”) = (0}, for N > m (17) 
where the vectors (u”}, { u r }  and (uf} represent the total, free and scattered displacements at the 
centre of each element, respectively. 

Under the assumption of relaxed boundary conditions, the decoupled scattered field displace- 
ments are related to the total tractions simply by 

In view of the above equation, the vector of the externally applied forces given by equation (12) 
can be expressed in terms of the scattered field displacements. The resulting expression, combined 
with equations (1 1) and (17), forms a system of linear algebraic equations which can be solved for 
the displacement vector4’ {D”). 

The case of surface foundations can be deduced from the embedded case for zero embedment. In 
fact, on the lines of the above developments, the response of a rigid massless surface foundation in 
complete bond with the elastic half-space is given by42 

NUMERICAL EXAMPLES 

Two numerical examples are presented in order to demonstrate the applicability and the accuracy 
of the time domain BEM. The method is employed to determine the responses of a surface and an 
embedded massless rigid strip-foundation subjected to either external dynamic forces or seismic 
waves. Even though the responses of the foundations to a transient dynamic disturbance can be 
obtained from the rectangular impulse responses in conjunction with the superposition algorithm 
expressed by equation (X), the steady state responses of the footings are obtained here by the 
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proposed method in order to compare the accuracy of the method against already existing results 
in the frequency d ~ m a i n . ~ . ' . ~ * ' ~ - ~ ~  

Example I 

Consider a surface rigid strip-foundation with 50ft width, placed on the surface of a 
homogeneous isotropic linear elastic half-space characterized by a modulus of elasticity E = 
258984 x lo9 lb/ft2, a mass density p = 10-368 lb/sec2/ft4 and Poisson's ratio v = 1/3 or 1/4. 

The foundation is first subjected to the rectangular impulse forces and moment with intensities 

P I 0  = P2, = 18Ok/ft, M30 = 180 k-ft/ft (20) 
respectively, and time duration At = 16 x s for v = 1/3. Even though the present methodology 
can take into account non-relaxed boundary conditions (perfect bonding), 'rigid-smooth' or 'rigid- 
pressureless' conditions are assumed at the contact area permitting the decoupling of the vertical, 
horizontal and rocking motions. The assumption of relaxed boundary conditions reduces the 
computational effort considerably without any significant effect on the solution accuracy. Results 
are given for a discretization consisting of 8 equal line elements; however, essentially identical 
results have also been obtained for a 5-element mesh. In order to increase the accuracy of the 
method, as far as the dynamic effect of the travelling waves on the response is concerned, every 
element is further discretized into 5 subelements. Thus, each component of the tensor [fAsGRq ds] of 
equation (7) is obtained by adding all the values corresponding to each individual subelement. The 
vertical response of the footing is plotted versus time in Figure 4. The Figures depicting the 
horizontal and rocking impulse responses can be found in Reference 42. The accuracy of the 
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"'"T 
1 I I I I I 
0 10 20 30 40 

0 1 2 3  
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Figure 4. Vertical force impulse response 
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impulse responses has been verified through comparison studies presented by Spyrakos and 
Antes4* 

In order to document the accuracy of the method, the response of the foundation to harmonic 
forces is determined. The external forces have the form 

P,(t)  = PI, sinot, P2( t )  = P, ,  sinot, M3( t )  = M30 sin or (21) 

where Pl0 = Pzo = 180 k/ft and M,, = I80 k-ft/ft. The vertical, horizontal and rocking harmonic 
amplitudes, as obtained by the proposed method and shown in Figures 5(a)-(c), are in close 
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Figure 5(a). Vertical harmonic force response amplitude 
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Figure 5(b). Horizontal harmonic force response amplitude 
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Figure 5(c). Rocking harmonic force response amplitude 

Figure 6. Vertical harmonic force response 

agreement with the results presented by Karasudhi, Keer and Lee6 and Luco and Westmann.' 
Figure 6 depicts the time history of the vertical harmonic response of the footing for a specific 
frequency. The remaining responses for the horizontal and rocking motions have been plotted in 
Reference 42. It should be pointed out, as it is clearly shown in Figure 6, that the present time 
domain BEM methodology, in contrast to the conventional frequency domain techniques, can 
capture the transient motion during the early response time. All required computations were done 
on the University of Minnesota CDC Cyber 74 computer. A typical response calculation (vertical 
impulse response) for 8 line elements with 5 subelements per element and 600 time steps required 
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650-694s CP time, whereas the corresponding impulse superposition for the computation of the 
vertical harmonic response only 3.048s CP time. The above mentioned CP times correspond to the 
determination of the responses plotted in Figure 4 and Figure 6, respectively. All the required 
numerical integrations were performed by a six-point Gaussian quadrature algorithm. 

Consider now the same strip-foundation subjected to a train of plane travelling waves 
propagating in the xlxz plane. The vector of the total displacements of the rigid massless footing 
for seismic waves of a general time variation can be determined from equation (19). Even though 
equation (19) permits the calculation of the foundation response to a general train of seismic waves, 
the response is obtained here for a harmonic Rayleigh wave in order to compare the accuracy of the 
method with already existing  result^.^*'^ In the absence of the rigid foundation and for an elastic 
soil medium with v = 1/4, the vertical free-field surface displacement tif2 with an amplitude R, for a 
harmonic Rayleigh wave horizontally propagating in the xlxz plane is given by46 

- 

' 

tif2 = R,sin [ w ( t - 91;!168)] 

The results obtained by the time domain BEM under relaxed boundary conditions show a very 
close agreement with the results of Oien' and Simpson" as indicated in Figures 7(a) and 7(b). It 
should be noticed that although Simpson's'o results have been obtained under the assumption of 
complete bonding they are very close to the present results. 

Even though a Harris H100, which is by far smaller and slower than a Cyber 74, was used to 
perform the required computations only 42.85s CP time was needed for the calculation of the 
seismic impulse response4' and 52.59s CP time for 1800 steps of the seismic harmonic response. 
This very small amount of CP time was expected, since no superposition was employed for the 
determination of the seismic motions. 
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Figure 7(a). Vertical ha,monic Rayleigh wave response amplitude 
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Figure 7(b). Rocking harmonic Rayleigh wave response amplitude 
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Figure 8. Vertical force impulse response 
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Example 2 

Consider an embedded strip-foundation of 5.0 ft width and 1.25 ft depth placed on a linear elastic 
soil medium characterized by the elastic constants and density defined in the first example. 

Assuming relaxed boundary conditions, the response of the embedded strip-footing to the 
rectangular impulse forces and moment of magnitude PI, = P,, = 180 k/ft and M , ,  = 180k- 
ft/ft, respectively, and time duration At = 16 x s is determined first. The soil-foundation 
interface and part of the soil around the foundation is discretized into 20 elements as shown in 
Figure 3(a). In addition, a subdivision of every element into 3 subelements has been employed in 
order to improve the computational accuracy of the tensors [f,Gmds] and [f,F'ds] appearing in 
equations (9) and (10) in an efficient way. The vertical impulse response of the foundation is plotted 
in Figure 8. It is observed that the radiation damping quickly smoothes out the irregularities of the 
impulse response occurring at early times, almost at the rate observed for surface footings. Similar 
Figures pertaining to the horizontal and rocking impulse responses are given in Reference 42. 
Owing to the additional resistance imposed by the side walls, the amplitudes of the impulse 
responses for the embedded foundation are smaller than their counterparts of the surface case. The 
results portrayed in the above Figures are sufficient to determine the response of the footing to any 
external dynamic loading. 

In order to document the accuracy of the method, the response of the foundation to the 
harmonic forces expressed by equation (21) are determined next. The resulting amplitudes of the 
harmonic motions, together with those obtained by Alarcon and D o m i n g u e ~ , ~ ~  are plotted in 
Figures 9(a)-(c). 

It is observed that the vertical, horizontal and rocking amplitudes of the present analysis are in 
close agreement with those of reference 35. The small differences between the solutions of the two 
methods could be due to the fact that the results of reference 35 were reproduced here by enlarging 
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Figure 9(a). Vertical harmonic force response amplitude 

I 



DYNAMIC RESPONSE OF RIGID STRIP-FOUNDATIONS 

AMPLITUDE ( f t  x 

9 0 - .  

8 0 -  

7 0 .  

6 0 -  

5 0 -  

4 0 -  

3 0 . .  

2 0 -  

1 2 0 . -  

1007 

9 HORIZONTAL MOTION 

4 

HORIZONTAL MOTION 

0 ALARCON AND DOMINGUEZ 

BEM p2= 1 8 0 s l n w t  ( K / f t )  

1 :  
0 5 0  0 75 100 125 I 50 0 , -  bW 0 25 

c2 

Figure 9(b). Horizontal harmonic force response amplitude 

ROCKING MOTION 
0 ALARCON AND DOMINGUEZ 
A BEM TIME DOMAJN 

Mj  = 1 8 0 s i n w t ( K - f t / f t )  
n 'T- 
V = 1/3 

0 O E 0 I  60 --=", 
0 40 

* 
0 5 0  0 75 100 125 150 0 25 

(lo == 
c5 

Figure 9(c). Rocking harmonic force response amplitude 
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their very small figures. The response of the footing to a vertical harmonic force is plotted in Fig. 10. 
Let now the foundation be excited by plane compressional waves impinging on the bottom side 

at 6 = 75" angle of incidence. Even though the foundation response to a general train of 
compressional waves can be evaluated with the aid of equation (19), the response is obtained here 
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Figure 1 l(a). Vertical harmonic P-wave response amplitude 
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Figure 1 I(b). Rocking harmonic P-wave response amplitude 

for harmonic P-waves. The dimensionless amplitudes of the rigid modes of motion versus the 
dimensionless frequency of harmonic waves are portrayed in Figures 1 l(a) and 1 l(b). More details 
regarding the computational schemes can be found in reference 42. 

CONCLUSIONS 

A direct time domain BEM suitable for the solution of general two-dimensional linear 
elastodynamic problems has been presented and applied for the first time to the solution of two 
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representative soil-structure interaction problems, namely the dynamic analysis of two- 
dimensional rigid surface or embedded foundations under conditions of plane strain. In this 
method the response is obtained by an impulse response superposition approach. The proposed 
method presents distinct advantages over other numerical methods because it combines the 
advantages of the BEM as well as a time domain formulation and solution of the problem. Thus, 

1. It requires discretization only along the boundary, in contrast to the finite element method 
(FEM) and the finite difference method (FDM), which require discretization of both the 
boundary and the interior of the body. 

2. It is very well suited for structures of infinite extent, since it automatically accounts for the 
radiation condition, thereby eliminating the need for extensive discretization or non- 
reflecting boundaries as in the case of the FEM and the FDM. 

3. It determines the response in a direct and natural way and not in two steps involving solution 
in the frequency domain and Fourier synthesis, as frequency domain methods require. 

4. It can handle transient forces or seismic disturbances without any difficulty and also, in 
contrast to the frequency methods, detect the transient phenomena during early response 
times preceding the steady-state motion. 

5. The present time domain BEM forms a basis for an extension to the case of non-linear soil 
behaviour, which is impossible by frequency domain methods. 
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